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Abstract. Precise control is critical for robots, but it is difficult to obtain an accurate dynamic 

model of the robot due to the presence of modeling errors and uncertainties in the complex 

working environment, resulting in decreased control performances. The article proposes a 

method for designing a digital controller for output tracking of disturbed repetitive robot 

manipulators that does not require a mathematical model of the controlled robots, with the goal 

of improving tracking accuracy. This controller consists of two separate intelligent parts. The 

first part aims to stabilize the original robot manipulators via a model-free state feedback 

linearization technique. The suggested model-free state feedback linearization technique does 

not make use of the original Euler-Lagrange model of the robot. The second part will then 

employ the concept of iterative learning control to asymptotically drive the obtained stable linear 

system to desired references. Both of these parts use only the robot’s measured data from the 

past for carrying out their tasks instead of robot models. Moreover, the proposed controller is 

structurally simple and computationally efficient. Finally, to validate the theoretical results, a 

simulation verification on a 2-degree-of-freedom (DOF) uncertain planar robot is performed, 

and the results show that excellent tracking performance is feasible. 

Keywords: intelligent feedback linearization, iterative learning control, disturbance compensation. 
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1. INTRODUCTION 

Robotic manipulators are widely used in industries to perform repetitive tasks. They can 

carry heavy payloads, work faster, more accurately and smarter than humans. In addition, the 

application of robotic manipulators increases the productivity and quality of products to a greater 

extent. Therefore, many control methods have been established and applied to them to ensure 

that they will achieve the required accuracy. 

At the beginning, the research mainly focused on model-based control methods [1 - 7]. It 

means that the design of controller was established mainly based on the following system of 

mathematical equations of robotics (also called the Euler-Lagrange model): 

 ( , ) ( , , ) ( , )u d M q q C q q q g q       (1) 
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where 1( ,   , )Tnu u u  is an n dimensional vector of control inputs (torques), d  is a vector of 

the same dimension which includes all unknown viscous friction torques and exogenous 

disturbances affecting the robot manipulator's performance, ( , )M q   is an n n  symmetric 

positive definite inertia matrix, 1( ,   , )Tnq q q  is a vector of n  joint variables, the vector   

contains all uncertain parameters of robot models, ( , , )C q q q  is a vector of Coriolis and 

centrifugal terms, ( , )g q   is an n dimensional vector of gravitational torques. All the above 

existing model-based control methods are classified into different types depending on whether 

  and d  can be determined. 

If both   and d  can be determined exactly, the feedback linearization method is applicable 

[1 - 3]. However, the assumption that   and d  are known is difficult to satisfy in the real world, 

so adaptive methods are preferred. For the case where   is unknown, but d  is negligible, 

certainty-equivalent and Li-Slotine methods are suitable [1, 4, 5]. In the most practical scenario 

that both   and d  are unknown, the sliding mode control (SMC) technique [6, 7] is an 

appropriate one. However, due to the inherent chattering characteristic of SMC, the main 

obstacle to implementing this technique in practice is that the actuators have to switch their 

value signs with a very high frequency on the sliding surface, which causes premature failures in 

the whole system. 

This analysis of the disadvantages of the model based control methods has pointed out that 

all difficulties of conventional control methodologies can be overcome by using supplementary 

intelligent control techniques as a separate part of the control system, such as fuzzy control [8], 

neural network-based methods [9, 10], and iterative learning control (ILC) [11, 12]. 

ILC is known as an effective output tracking control concept for repetitive controlled 

systems with a fixed working period T [13]. It utilizes system tracking errors recorded along the 

past working period ( 1)k T t kT   to refine the system inputs ( )u t  in order to reduce its 

output tracking errors during the next working period ( 1)kT t k T   based on an update law. 

According to the ILC concept, the input and output ( ),  ( )u t y t are often symbolized with 

( ),  ( )k k
u y  , respectively, where k indicates the current working period, also known as trial, 

and 0 T  is a time instant among this trial. Essential researches on the ILC concept have 

focused mainly on how to determine an appropriate update law and its parameters for a 

particular controlled system, which guarantees the convergence of the system tracking error 

( ) ( ) ( )k k
e r y     in the sense of lim ( ) 0k

k
e 


 . 

Different from the works [11, 12], where nonlinear update laws are employed and the 

convergence is not analyzed in detail, this article will show that the application of a 

supplemental model-free feedback linearization controller using the ILC concept with the basic 

linear P-Type update law for tracking control of robot manipulators is possible. Furthermore, a 

sufficient condition for required convergence ( ) 0ke    is also given. 

The article is organized as follows. First, Section 2 provides the main theoretical results 

with a complete control algorithm in it. Then, a numerical example with an uncertain 3 DOF 

robot is illustrated in Section 3. Finally, conclusions and future works are presented at Section 4. 
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2. MAIN RESULTS 

2.1. Control framework 

It is obvious that the Euler-Lagrange model (1) of robot manipulators is equivalent to 

 1 2q Aq A q u       (2) 

where 1 2,A A  are two arbitrarily chosen matrices and 

 2 1( , ) ( , , ) ( , )nd I M q q C q q A q g q Aq                     (3) 

is an unknown function vector, which consists of matched disturbances and model uncertainties. 

Moreover, this new unknown function vector   also contains the nonlinearity of the original 

model (1). Based on the obtained equivalent model (2), an intelligent control framework for 

output tracking controlled robot manipulators (1) can be suggested correspondingly as follows: 

– First, the new unknown function vector   will be compensated by its estimated value  . If 

this is already done, then by using the compensator 

 u v                    (4) 

the system (2) becomes linear with a small remaining estimation error   as below 

  x Ax B v    ,   , n ny q I x  0      (5) 

where 

 
1 2

,  ,  ,  
n n n

n

q I
x A B
q A A I

  
     

         
     

0 0
    (6) 

and ,  n nI0  are the zeros and the identity matrix of dimension n n , respectively. 

Note that for holding the intelligent ability of the obtained output tracking controller later, 

the created estimator    must be model-free. It means that this estimator could only use the 

measured data x  of  robots to calculate   for its action, not the model (1). 

– Secondly, the compensated system (5) will be controlled so that its output ( )y t  converges 

to a desired reference ( )r t . For this purpose, the ILC concept is utilized. 

Figure 1 below illustrates the aforementioned control framework.  

 

2.2. Feedback linearization via model-free disturbance compensation 

Back to the compensator ( )v t  in (4) and with the notation of k  as the current working 

Figure 1. Suggested control scheme. 
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period, i.e. with ,  0t kT T     and ( ) ( ),  ( ) ( )k kv t v x t x   , then (5) is rewritten as: 

 ( ) ( ) ( ) ( ) ( )k k k k k
x Ax B v          

 
. (7) 

The purpose of the design of model-free feedback linearization block (see Fig. 1) is now to 

estimate   from measured values of ( )kx   for compensating  . 

Denote the last two measured values of ( )kx  , one at current time instant siT   and the 

other at previous time instant ( 1)s sT i T    , with  ( ),  ( 1)s sk kx iT x i T , respectively, where 

 is an arbitrarily small chosen constant, then based on Taylor expansion of ( )kx   

around ( 1) si T as below 

  
2

( 1) ( ) ( ) ( )
2

s
s s s sk k k k

T
x i T x iT T x iT x      (8) 

where ( 1) s si T iT   , or 

 
 ( ) ( 1)

( )
s sk k

sk
s

x iT x i T
x iT

T

 
 . (9) 

If the last term of (8) is negligible, the equation (7) will be approximated by 

 
 

 
( ) ( 1)

( ) ( ) ( 1) ( )
s sk k

s s s sk k k k
s

x iT x i T
Ax iT B v iT i T iT

T
 

 
     
 

. (10) 

The obtained equation (10) will be used for calculating the estimated value ( )sk
iT  at the 

current time instant in a straightforward manner as follows. First, both the sign ‘ ’ and ( )sk
iT  

in (10) are replaced with = and ( )sk
iT , respectively. 

 
 

 
( ) ( 1)

( ) ( ) ( 1) ( )
s sk k

s s s sk k k k
s

x iT x i T
Ax iT B v iT i T iT

T
 

 
     
 

, 

Then, calculate 

 
 

 
( ) ( 1)

( ) ( ) ( ) ( 1)
s sk k

s s s sk kk k
s

x iT x i T
B iT Ax iT B v iT i T

T
 

 
     
 

 

which yields 

 
 

 
( ) ( 1)

( ) ( ) ( ) ( 1)
s sk kT

s s s sk kk k
s

x iT x i T
iT B Ax iT v iT i T

T
 

  
        

 
. (11) 

Theorem 1: The value ( )sk
iT  obtained from (11) minimizes the approximation error of (10). 

Proof: Denote the error of both sides of (10) with 

 
 ( ) ( 1)

( ) ( ) ( 1) ( )

( )

s sk k
s s s sk k k k

s

sk

x iT x i T
Ax iT B v iT i T iT

T
B iT

  

 

 
      
 

 
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where 

  
 ( ) ( 1)

( ) ( ) ( 1)
s sk k

s s sk k k
s

x iT x i T
Ax iT B v iT i T

T
 

 
     
 

, 

then the following optimization problem 
22* argmin argmin argmin

argmin 2

k k k

k

T

k k k

T T T
k k k

B B B

B

  



      

     

        
   

   
 



 

has a unique solution 

 * TB    

which coincides with ( )sk
iT  given in (11).  ■ 

It is worth noting here that the created estimator (11) for compensating the summarized 

vector   of disturbances and model error does not use the original mathematical model (1) of 

robot manipulators. Hence, the compensator (4) with   obtained from (11) is model-free. 

2.3. Iterative learning controller design 

After the summarized disturbances   defined in (3) are compensated with the compensator 

(4), the system (2) becomes LTI as described in (5), which is now rewritten in the ILC language 

for repetitive systems as follows 

 
( 1) ( ) ( ) ( )

( ) ( )

k k k k

kk

x i Ax i B v i i

y i Cx i

       




 (12) 

where 0,1,  , si N T T   , 1( ) (0)k kx N x  , and 

    
0

exp ,  exp
sT

sA AT B At Bdt    and   , n nC I 0 . (13) 

Under the assumption that both matrices 1 2,A A  are suitably chosen such that the matrix A  

given in (6) becomes Hurwitz, the next control task is now to determine an appropriate learning 

parameter K for a P-Type update law 

 1( ) ( ) ( )k k kv i v i Ke i    with ( ) ( ) ( )k k
e i r i y i   (14) 

in order to satisfy the required convergence ( ) 0ke i   for all i , or at least as close as possible 

to the origin. 

Since ( )kv i  provided by the ILC (14) is a piecewise constant, the obtained discrete-time 

model (12) is absolutely equivalent to the continuous-time one (5). Moreover, the model (12) 

does not use any information of the system (1). Hence, it can be applied to all robot 

manipulators. 

From (12), it is obtained with the assumption ( ) 0k i   
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1

1
1 11

0

( ) (0) ( )
i

i i i
k kk

j
y i CA x CA Bv j


 

 


   , 

which yields, based on (14) and the obviousness of repetitive ability 1(0) (0),  k kx x k  , 

 

 

 

1
1

1 1
0

1 2
1 1

0 0

( ) ( ) ( ) ( ) (0) ( ) ( )

( ) ( ) ( ) ( ) ( )

i
i i i

k k k kk
j

i i
i j i j

k k kk
j j

e i r i y i r i CA x CA B v j Ke j

r i y i CA BKe j I CBK e i CA BKe j


 

 


 
   

 

 
      

 

     



  , 

or 

 

1

1

1 2
1

(0) (0)

(1) (1)

( 1) ( 1)

k k

k k

N N
k k

I CBKe e

e eCABK I CBK

e N e NCA BK CA BK I CBK





 


    
    

          
               

0 0

0
. 

Hence, 1k k e e  (15) 

where 

 

(0)

(1)

( 1)

k

k
k

k

e

e

e N

 
 
 
 
   

e  and 

1 2N N

I CBK

CABK I CBK

CA BK CA BK I CBK 

 
 

  
   

 
    

0 0

0
. (16) 

Theorem 2: For the scenario of ( ) 0k i   the requirement ( ) 0ke i   for all 0,1,   , 1i N    

will be satisfied if and only if the P-Type learning parameter K is chosen so that   given in 

(16) becomes Schur. 

Proof: Since it is obviousness that the autonomous system (15) is stable if and only if   is 

Schur, the proof is complete.  ■ 

2.4. Control algorithm and performance of closed-loop system 

In order to facilitate the implementation of the proposed model-free controller (4), where v  

and   are obtained from (14) and (11), respectively, the following algorithm is established. In 

this control algorithm, each while-loop represents a trial, i.e. a working period T of repetitive 

robots. 

Now, to complete this section, the output tracking performance of the closed-loop system 

illustrated in Fig. 1 will be investigated generally for the scenario of ( ) 0k i  . 

Theorem 3: If d  is continuous and bounded then the suggested model-free control framework in 

Fig. 1, including the feedback linearization block via disturbance compensator (4), (11) and the 

ILC block (14), drives the output tracking error | ( ) |ke   of robot manipulators (1) to a  

dependent neighborhood of origin. The smaller sT  is chosen, the smaller  will be. 

Proof: Due to the continuity and boundedness of d , the total disturbance   is also continuous 
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and bounded. Hence,   is also bounded. Denote the upper bound of   with  , then by 

Theorem 1 this upper bound   can be made arbitrarily small by reducing sT . 

Theorem 2 authenticated the rightness of 

 A Bv     with  vec( , )r r  . (17) 

The subtraction (17) from (5) yields 

 A B      where vec( , )e e  . (18) 

Since A  is Hurwitz, the following Lyapunov equation TA P PA Q    with an arbitrarily 

chosen positive definite matrix Q  always has a positive definite solution P . The usage of 

positive function ( )
TV P    yields 

 

   

 
2

max max

2 2

( ) 2 ( ) 2

T T

T T T TT

V A B P P A B

A P PA PB Q PB

Q PB Q PB

     

       

     

   

     

           

where max( )Q  is the maximal eigenvalue of the positive definite matrix Q . 

Since 0V   as long as 

 max2 ( )PB Q    or 
max

2

( )

PB

Q





  

the vector of the tracking error vec( , )e e   still tends to the origin until it reaches 

 
2

max

2
  

( )

n PB

Q
 



 
   
 

R  (19) 

the point of proof.  ■ 

Algorithm: Model-free output tracking control for robot manipulators with unknown 

parameters and matched disturbances. 

1 Choose two matrices 1 2,A A  so that A  given in (6) becomes Hurwitz and a sufficiently 

small constant 0 1sT . Calculate sN T T  and ,A B  from ,A B  accordingly to (13). 

Chose arbitrarily ̂ . Assign ( ) ( ),  0,1,   , 1v i r i i N     and 0z  . Choose learning 

parameter K so that   given in (16) becomes Schur. 
2 while continue the control do 

3 for 0,1,   , 1i N   do 

4 Send ˆ( )u v i    to robot for a while of sT . Measure ( )y i q  and vec( , )x q q . 

Determine ( ) ( ) ( )e i r i y i  . 

5 Calculate  ( )T

s

x z
B Ax v i

T
 

 
    

 
. Set z x . 

6 end for 

7 Establish  vec (0),   , ( 1)v v N v  and  vec (0),   , ( 1)e e N e . 
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8 Set K v v e . 

9 end while 

3. SIMULATION RESULTS 

3.1. Mathematical model of 2-DOF planar robot 

To illustrate the performance of the proposed model-free controller, it is considered here a 

2-DOF uncertain planar robot described by Euler-Lagrange model (1), where all mass, length 

and friction of robot arms are unknown. The model (1) of this uncertain robot consists of 

 

1 2 2 3 4 2

3 4 2 5

6
6 2 2 2 2

7 1 2

8 1 9 1 2

10 1 2

cos cos
( , )

cos

sin sin
( , , ) 2

sin 0

cos cos( )
( , )

cos( )

q q
M q

q

q q q q
C q q

q q

q q q
g q

q q

   


  








 




  
   

 
 
 
 

  
   

 (20) 

It assumes additionally that the robot is repetitive with 10T s and disturbed in inputs by 

 11 12

13 14

sin( )
( )

cos( )

t
d t

t
 

 

 
  
 

, (21) 

where all ,  1 14i i    are unknown constants. Note that the robot model (1) with parameters 

(20) and disturbances (21) will be utilized for the simulation to execute the robot dynamic only, 

not to design the controller. 

3.2. Simulation results and discursions 

For the simulation, there are assigned 

 

   
   

1 2

sin 0.2sin 3
( )

2sin 0.5sin 3

31 0 12 0 0.85 0
,  ,  

0 13 0 8 0 0.3

t T t T
r t

t T t T

A A K

 

 

 
    

     
       
     

 and 0.02sT s  

After implementing the control algorithm presented in Subsection 2.4 as a Matlab program 
named VAST.m with the source code given in the Appendix, we obtain the simulation results 
exhibited in Figure 2 and Figure 3. 

As seen in these visual tracking results, both joint variables converged on their desired 

references. Exactly after 200 trials the maximal value of the tracking error over the whole 

working period is approximately 200max | (1) | 0.05e  for the first joint variable and 

200max | (2) | 0.04e  for the second joint variable, respectively. In addition, they also 

authenticated that the more the trials are executed, the smaller the tracking error will be. Hence, 

these simulation results completely satisfy all theoretical assertions obtained above. 
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4. CONCLUSIONS 

An intelligent controller for output tracking control of uncertain robot manipulators with 

matched disturbances is proposed in the article. This controller is established based on 

combining a summarized disturbances compensator acting as a model-free feedback 

linearization regulator and an output tracking controller which is created based on the ILC 

concept. This proposed model-free controller does not use the original Euler-Lagrange          

model (1). It needs only the measurement of vec( , )x q q  from robot manipulators for its 

operation. The simulation results have authenticated the intelligent adaptive performance of the 

proposed model-free controller as expected. 
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APPENDIX 

The source code of having used simulation program VAST.m is listed in detail as below. 

global v i etah A1 A2 theta 

for i=1:14  % uncertain model parameters 

    theta(i)=2+random('norm',0,1); 

end 

% System parameters 

T=10; Ts=0.02; N=T/Ts; % number of samples 

A1=[31 0;0 13]; A2=[12 0;0 8]; K=[0.85 0;0 0.3]; 

A = eye(4)-Ts*[zeros(2) eye(2);-A1 -A2]; ti=[]; y=[]; 

for i=1:N  % Create desired references 

    r(1,i)=sin(pi*(i-1)/N)+0.2*sin(3*pi*(i-1)/N); 

    r(2,i)=2*sin(pi*(i-1)/N)-0.5*sin(3*pi*(i-1)/N);  

    ti(i)=(i-1)*Ts;  % working time period 

end 

v=r; etah=zeros(2,1); t0=0; u=r; e=r; % initial values 

M=200;    % setting trial number 

for j=1:M 

    x0=[0 0 1.6*pi/T 0.5*pi/T 0 0]; j  

    for i=1:N 

        [t,x]=ode45(@funVAST,[t0,t0+Ts],x0); 

        % disturbances estimation 

        etah = etah-v(:,i)+[zeros(2) eye(2)]*(A*x(end,1:4)'-x0(1:4)')/Ts;  

        y(:,i)=[x0(1);x0(2)]; t0=t(end); x0=x(end,:);          

    end 

    e=r-y; v=v+K*e; % P learning 

    if j==20; y20=y; end 

end 

figure(1); plot(ti,r(1,:),ti,y20(1,:),ti,y(1,:),ti,e(1,:)); 

legend('1.reference','1.variable after 20 trials','1.variable after 200 

trials','error after 200 trials'); 

figure(2); plot(ti,r(2,:),ti,y20(2,:),ti,y(2,:),ti,e(2,:)); 

legend('2.reference','2.variable after 20 trials','2.variable after 200 

trials','error after 200 trials'); 

The aforementioned simulation program used following subprogram named funVAST.m to 

execute the robot dynamic. 
funVAST.m 
function dx = funVAST(t,x) 

% q-[x(1);x(2)]; q_dot=[x(3);x(4)]; q_ddot=[x(5);x(8)] 

global v i etah A1 A2 theta 

% System unknown inertia matrix 

M1=theta(1)+theta(2)*cos(x(2)); M2=theta(3)+theta(4)*cos(x(2)); 

M3=theta(5); M=[M1 M2;M2 M3]; 

% System Coriolis and centrifugal terms 

c11=theta(6)*x(4)*sin(x(2)); c12=c11/2; 

c21=theta(7)*x(3)*sin(x(2)); c22=0; C=[c11 c12;c21 c22]; 

g1=theta(8)*cos(x(1))+theta(9)*cos(x(1)+x(2)); 

g2=theta(10)*cos(x(1)+x(2)); 

% Matched disturbances 

d=[theta(11)*sin(theta(12)*t);theta(13)*cos(theta(14)*t)]; 

% Summarized disturbances 

eta = d-((M-eye(2))*[x(5);x(6)]+C*[x(3);x(4)]+[g1;g2]); 

% Control signals 

u = v(:,i)-A1*[x(1);x(2)]-A2*[x(3);x(4)]; 

% Send to robot manipulator 

dx = [zeros(2) eye(2) zeros(2);zeros(2) zeros(2) zeros(2); 

zeros(2) eye(2) zeros(2)]*x+[zeros(2);eye(2);zeros(2)]*(u+eta-etah); 

end 


