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Abstract. Free vibration of carbon nanotube reinforced composite (CNTRC) sandwich beams, 

taking into account the effect of CNT agglomeration, is studied using an efficient beam element. 

The sandwich beams consist of three layers, a homogeneous core and two agglomerated CNTRC 

face sheets with material properties being estimated by the Eshelby-Mori-Tanaka approach. 

Based on the trigonometric shear deformation theory, a finite beam element is formulated and 

used to construct the discretized equation of motion for the beams. To improve the efficiency of 

the element, hierarchical functions are employed to enrich the conventional Lagrange and 

Hermite interpolation functions. The numerical investigation shows that the formulated beam 

element is efficient, and it is capable to give accurate natural frequencies by using a small 

number of elements. It is also foundation the frequencies of the beams are significantly 

influenced by the CNT agglomeration, and the increase of CNT reinforcement may not be useful 

for the beam with severe CNT agglomeration. A parametric study is carried out to investigate 

the effects of the agglomeration, the volume fraction of CNTs as well as the layer thickness ratio 

on the vibration of the sandwich beams. 

Keywords: CNTRC sandwich beam, CNT agglomeration, free vibration, enriched interpolation, finite 

element method. 

Classification numbers: 5.4.2, 5.4.5. 

1. INTRODUCTION  

Carbon nanotubes with high aspect ratio, large surface area as well as outstanding 

mechanical, thermal, and physical properties make them an idea material for reinforcing 

polymer matrices. Many studies have pointed out that adding small amounts of CNTs to the 

matrix of a polymer composite can considerably enhance its mechanical properties. However, in 

most studies the CNTs are considered as aligned single-walled carbon nanotubes (SWCNTs) and 

estimated through rule of mixture model (ROM) [1 - 5].  
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CNTs have high aspect ratios and low bending stiffness, making them susceptible to 

agglomeration within the polymer matrix. To predict the effective properties of composites 

reinforced by agglomerated CNTs, Shi et al. [6] developed a micromechanics model that 

considers CNTs agglomeration. Free vibration analysis of functionally graded CNT-reinforced 

composite (FG-CNTRC) beam using Eshelby-Mori-Tanaka (E-M-T) approach are analyzed 

numerically by Heshmati and Yas [7]. In there, a two parameter micromechanics model [6] is 

employed to determine the effect of CNTs agglomeration on the elastic properties of randomly 

oriented CNTRC, and then the effective moduli of the composite are derived from the Mori-

Tanaka (M-T) method. Different SWCNTs distributions in the thickness are introduced to 

determine fundamental frequency of composite beam in [7]. Nejati and Eslampanah [8] studied 

natural frequency of a thick cantilever beam reinforced by CNTs functionally distributed along 

the thickness. The generalized differential quadrature method (GDQM) is used to discretize the 

equations of motion and to implement the boundary conditions. Kamarian et al. [9] predicted the 

free vibration characteristics of FG nanocomposite sandwich beams on Pasternak foundation, 

considering the agglomeration effect of SWCNTs. The natural frequency analysis of non-

uniform CNTRC beams with piezoelectric layers considering CNT agglomeration effect was 

presented by Kamarian et al. [10], using the GDQ technique and Eshelby-Mori-Tanaka 

approach.  Recently, Kiani et al. [11] studied the thermo-mechanical buckling of CNTRC beams 

under a non-uniform thermal loading. The CNTs are orientated randomly and distributed along 

thickness direction by various symmetric and non-symmetric patterns, and agglomeration of 

CNTs is incorporated.  

This paper is motivated by the lack of studies on the influence of CNT agglomeration on 

vibration of CNTRC sandwich beams. The core of the sandwich beam is homogeneous, while 

the two face sheets are made from CNT reinforced composite material. The E-M-T approach is 

used to estimate the mechanical properties of the beam. Based on the trigonometric shear 

deformation theory, a two-node beam element is formulated and employed to construct the 

discretized equation of motion for the beams. The effects of various parameters, including the 

CNTs agglomeration, volume fraction of CNTs and layer thickness ratio on the vibrational 

behavior of the sandwich beams are examined in detail and highlighted. 

2. BEAM REINFORCED WITH AGGLOMERATED CNTS 

Figure 1 shows a simply supported sandwich beam with length L, rectangular cross section 

 .b h The core of the sandwich beam is made of homogeneous material while the face sheets 

are material reinforced by CNTs. The Cartesian coordinate system in Figure 1 is chosen such 

that the x-axis is on the beam’s mid-plane, and the z-axis is perpendicular to the mid-plane and it 

directs upward.  

 

 

 

 

 

 

Figure 1. Geometry and coordinate system of sandwich beams  
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Figure 2. RVE with Eshelby cluster model of agglomeration of CNTs. 

Denoted by 
0 1 2 3/ 2, , , / 2h h h h h h  are, respectively, the vertical coordinates of the 

bottom surface, the interfaces between the layers and the top surface. 

Figure 2 shows the representative volume element (RVE) V, in which there are some 

regions with a higher concentration CNTs, called spherical clusters. The total volume 
rV  of 

CNTs in the RVE V can be divided into the following two parts: 

 
cluster m

r r rV V V   (1) 

where andcluster m

r rV V represent the volumes of CNTs inside and outside of the cluster (matrix), 

respectively. Two parameters are introduced to describe the agglomeration: 

 
, , 0 , 1

cluster

cluster r

r

V V

V V
      

 

(2) 

where 
clusterV  is the volume of clusters in the RVE;   denotes the volume fraction of clusters 

with respect to the total volume of the RVE, and  is the volume ratio of the CNTs inside the 

clusters over the total CNT inside the RVE. In special cases, 1,  CNTs are uniformity 

distributed in the matrix,  decreases leads to the agglomeration increases. When 1,  all 

CNTs are located in the clusters. The case    means that the volume fraction of CNTs inside 

the clusters is as same as that of CNTs outside the clusters. In the case ,  the value of  is 

bigger, the distribution of CNTs is more heterogeneous. The volume fraction 
CNTV  of CNTs in 

the composite is .r
CNT

V
V

V
  

The effective bulk and shear moduli of the clusters ,in inK G , and those of the region outside the 

clusters ,out outK G may be calculated by [6]: 
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where
   

and
3 1 2 2 1

m m
m m

m m

E E
K G

 
 

 
are the bulk and shear moduli of the matrix, 

respectively. In Eqs. (3) and (4), the subscripts m and r stand for the quantities of the matrix and 

the reinforcing phase; , , , ,r r r r rk l m n p are the Hill’s elastic moduli for the reinforcing phase.  

The Mori-Tanaka scheme is adopted herein to estimate the effective properties of the 

composite. The bulk modulus K and the shear modulus G of the composite are calculated as [6]: 
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where 
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. Noting that in the case CNTs are 

oriented completely at random throughout the matrix, the composite is considered to be 

isotropic. Then, bulk and shear moduli, K and G, are obtained by [6]: 
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(6) 

where 1 ,m CNTc V  and , , ,r r r r    as given in Eq. (4). 

The effective Young’s modulus E and Poisson’s ratio  of the composite can be derived by: 

 9 3 2
;

3 6 2

KG K G
E

K G K G



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 
  (7) 

The equivalent density of the CNT reinforced layer can be formulated as [15]: 

  CNT m m

CNTV       (8) 

3. MATHEMATICAL FORMULATION 

Based on the trigonometric shear deformation theory [12], the displacements of a point in 

the x and z directions are, respectively, given by 

 
0 0, 0 )s( , , ) ( , ) ; ( , ,n )i ( ,xu x z t t

z
u x t z

h
zw w x w x t


    (9) 

where  0 ,u x t and  0 ,w x t are, respectively, the displacements in the x and z directions of a 

point on the x-axis;  is the cross-sectional rotation, and t is the time variable.   
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The axial strain 
xx  and shear strain 

xz  resulting from Eq. (9) are 

 
0, 0, , ; cossinxx x xx x xz

z
u zw

h

z

h h




 
      (10) 

Since the beam is made of three layers, the stress–strain relations in the 
thk layer are given as: 

 ( ) ( ) ( ) ( ); ( 1,2,3)k k k k

xx xx xz xzE G k       (11) 

The elastic strain energy of the sandwich beam U is given by 
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where A = bh is the cross-section area;
71 2, ,...A A A are the beam rigidities, defined as 
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The kinetic energy T of the sandwich beam is given by 
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where the over dot denotes the derivative with respect to time variable; 
1 2 6, ,...I I I are the mass 

moments, defined as 
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4. FINITE ELEMENT FORMULATION 

A two-node beam element with length l is considered herewith. Linear functions are used 

to interpolate the axial displacement 
0u and cross-sectional rotation ,  while cubic Hermite 

polynomials are used for the transverse displacement 
0w as 

 
000 0; ;u wu w   Nd Hd Nd  (16) 

where 
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      
0 001 02 01 0 1 02 0 2 1 2; ;

T T T

u w x xu u w w w w     d d d  (17) 

are, respectively, the vectors of nodal displacement for 
0 0,u w and   at nodes 1 and  2; 

 0 1N NN and  0 1 2 3H H H HH are the matrices of the linear and Hermite shape 

functions. To improve the efficiency of the beam element, Lagrange and Hermite interpolations 

are enriched herein by hierarchical functions. Four higher-order hierarchic polynomials are used 

herewith to enrich the original functions, and the interpolation (16) is now replaced by [13]  

 
0 00 00 5 0 7 5

ˆ ˆ ˆ ˆ ˆ ˆ; ;u u w wu w       Nd N d Hd H d Nd N d  (18) 

where    5 2 3 4 5 7 4 5 6 7
ˆ ˆandN N N N H H H H N H are matrices of the enriched shape 

functions; 
0 0

ˆ ˆ ˆ, andwu d d d are the supplemented vectors of unknowns with the following forms 
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The enrichment functions  2 5iN i   and  4 7 ,jH j   derived in [13,14] are given below 
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With the enriched interpolations, the vector of degrees of freedom for the element  d  contains 

20 components, and it can be written as 

  
0 0 0 020 1

ˆ ˆ ˆ
T

u u w w  

d d d d d d d  (22) 

where 
0 0
, ,u w d d d are given by Eq. (17), and 

0 0

ˆ ˆ ˆ, ,u w d d d are defined by (19). Using Eqs. (18) 

and (22), one can write the strain energy in Eq. (12) in the following matrix form 
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T
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i

U


 d k d  (23) 

where ne is the total number of elements used to discrete the beam, and k is the element stiffness 

matrix, which can be split into sub-matrices as 
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The sub-matrices in the diagonal of the above element stiffness matrix have the following forms 
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and the off-diagonal sub-matrices are 
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ˆ ˆ ˆ ˆ ˆ, 3 5, 5, 2 , 5, 2 7,

0 0 0

ˆ ˆ, , ,

ˆ ˆ ˆ ˆ, , ,

l l l l

T T T T

u u x x u w x xx u w x xx u x x

l l l

T T T

x x u w x xx u w x xx uu

A dx A dx A dx A dx

A dx A dx A dx





   

  

     

     

   

  

k N N k N H k N H k N N

k N N k N H k N H k

0 0 00 0
4 4 4 24 4 4 4

0 0
2 44 2 4 4

5, 3 ,

0

ˆ ˆˆ5, 3 5, , 6 7, , 4 , , 4 5,ˆ

0 0 0 0

ˆ ˆˆ 7, 4 , , 4 5, , 5 5,

0 0

ˆ

ˆ ˆ ˆ ˆ, , ,

ˆ ˆ ˆ, ,

l

T

x x

l l l l

T T T T

x x w w xx xx w xx x xx xu w

l l

T T T

w xx x xx x xw

A dx

A dx A dx A dx A dx

A dx A dx A

 

  

  

 

     

    



   

 

N N

k N N k H H k H N k H N

k H N k H N k N N 7 5

0

ˆ
l

T

x A dx N N

 (26) 

Similarly, the kinetic energy T in Eq. (14) can also be written in the following matrix form as 

 

1

1

2

T

i i

ne

i

i

T


  dmd  (27) 

with the element mass matrix of the beam m can be written in sub-matrices as 

 
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0

0 0 0

ˆˆ ˆ

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ

20 20
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ

ˆ ˆ ˆˆ ˆ

u u u u u w u w u u

T

u u u u u w u w u u

T T

u w u w w w w w w w

T T T

u w u w w w w w w w

T T T T

u u w w

T T T

u u w w

 

 

 

 

     

  




m m m m m m

m m m m m m

m m m m m m
m

m m m m m m

m m m m m m

m m m m
0

ˆ ˆ ˆ ˆ

T T

  

 
 
 
 
 
 
 
 
 
 
 

m m

 

 

 

 (28) 

in which 
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   

0 0 0 0
2 2 4 4

0 0 0 0
4 4 4 4

2 2 4 4

ˆ ˆ1 5 1 5

0 0

ˆ ˆ1 , 6 , 7 1 7 7, 6 7,

0 0

ˆ ˆ5 5 5 5

0 0

ˆ ˆ,

,

ˆ ˆ,

l l

T T

u u u u

l l

T T T T

w w x x w w x x

l l

T T

I dx I dx

I I dx I I dx

I dx I dx 

 

 

 

 

   

 

 

 

 

m N N m N N

m H H H H m H H H H

m N N m N N

 (29) 

and 

 

0 0 0 0 0 0 0
2 4 2 4 2 4 2 2

0 0 0 0 00
4 4 4 4 4 22 4

0
4 4

ˆ ˆ1 5 2 , 2 7, 3

0 0 0 0

ˆ ˆ ˆ ˆ ˆ3 5 5 2 , 5 2 7, 5 3

0 0 0 0

ˆˆ

ˆ ˆ, , ,

ˆ ˆ ˆ ˆ ˆ, , ,

ˆ

l l l l

T T T T

u u u w x u w x u

l l l l

T T T T

u w x u w x uu

u

I dx I dx I dx I dx

I dx I dx I dx I dx







   

  



     

     



   

   

m N N m N H m N H m N N

m N N m N H m N H m N N

m N  
0 0 0
4 4 4 2

00 0
2 44 24 4 4 4

ˆ5 3 5 1 7 , 6 7, , 4

0 0 0

ˆ ˆ ˆˆ, 4 5 7, 4 , 4 5 5 5

0 0 0 0

ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ, , ,

l l l

T T T T

w w x x w x

l l l l

T T T T

x w x xw w

I dx I I dx I dx

I dx I dx I dx I dx



  

 

 

   

      

  

   

N m H H H H m H N

m H N m H N m H N m N N

 (30) 

Using the derived stiffness and mass matrices, the equations of motion for the free vibration 

analysis can be written in the form 

  MD KD 0  (31) 

where D, M and K are the global nodal displacement vector, mass and stiffness matrices, 

obtained by assembling the corresponding element vector and matrices over the total elements, 

respectively. Assuming a harmonic response for the free vibration, Eq. (31) leads to 

  2 K M D 0  (32) 

with   is the circular frequency, and D is the vibration amplitude. Eq. (32) leads to an 

eigenvalue problem, which can be solved by the standard method. 

5. NUMERICAL RESULTS AND DISCUSSION 

Numerical results on free vibration of the sandwich beam are presented in this section. The 

material properties of the matrix are as follows [15]: 
310GPa, 1150kg/m , 0.3m m mE     ; 

the armchair (10,10) SWCNTs are used as the reinforcements with
31400 kg/mCNT  . The 

material in matrix is chosen as the core material of the sandwich beam.

A simply supported sandwich beam with / 20, 0.4m, 1mL h b h   is considered. Three 

numbers in parentheses, e.g. (2-1-1), are used below to denote the layer thickness ratio of the 

beam layers, from the bottom layer to the top layer. The fundamental frequency parameter is 

defined as 
2

m

m

L

h E


   where   is the fundamental natural frequency. 
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5.1. Formulation verification 

 

Figure 3. Comparison of Young’s modulus for 0.1CNTV  and different agglomeration parameters. 

In order to examine the accuracy and reliability of the present study, the effective Young’s 

modulus of an agglomerated randomly oriented CNTRC beam obtained herein are compared 

with that of Daghigh et al. [15] in Figure 3. The effect of agglomeration parameters  and   on 

the Young’s modulus is displayed in the figure. The Young’s modulus for material in matrix 

phase is 2.5GPa;mE   Hill’s elastic modulus for the CNTs are taken form Ref. [6]. The elastic 

modulus curves in Figure 3 are plotted with the volume fraction of CNTs 0.1.CNTV  A good 

agreement between Young’s modulus of the present work with that of Daghigh et al. [15] is seen 

from Figure 3. Figure 3 also shows that the agglomeration parameters have a significant effect 

on the Young’s modulus. Specifically, the effective Young’s modulus increases with the 

increase of ,  its approach the highest magnitude at    (fully dispersed), and then Young’s 

modulus decreases. 

Table 1. Convergence of enriched beam element in evaluating fundamental frequency parameters of beam 

reinforced with randomly oriented CNTs for different boundary conditions. 

Boundary 

conditions 

Present Yas and Heshmati 

[16] 

Error 

(%) ne = 1 ne = 2 ne = 4 ne = 6 ne = 8  ne = 10 

CC 5.1531 5.1517 5.1507 5.1505 5.1503 5.1501 5.098585 1 % 

CS 4.2914 4.2908 4.2905 4.2904 4.2904 4.2904 4.356794 1.55 % 

CF 2.0570 2.0569 2.0569 2.0569 2.0569 2.0569 2.151246 4.59 % 

SS 3.4423 3.4423 3.4423 3.4423 3.4423 3.4423 3.574603 3.84 % 

Table 1 lists the fundamental frequency parameters of a randomly oriented CNTRC beam 

with 0.075CNTV   predicted by different numbers of the enriched elements. The result obtained 

by 100 Timoshenko beam elements in [16] is also given in the table. The frequency parameter 

defined as in [16] is 2 2 /m mL A E I    where 
3 = /12I bh . The table shows a fast 

convergence of the present element, and the convergence can be achieved by just one element 

for SS beam, two elements for CF beam, six elements for CS beam, and ten elements for CC 

beam. It can be seen that there is a difference in the frequency parameters obtained herein with 
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that of Ref. [16], but this error is still acceptable. Noting that Ref. [16] ignored the CNT 

agglomeration effect. 

5.2. Natural frequencies 

Figure 4 shows the variation of the frequency parameters with the agglomeration parameter 

  for various thickness ratios. Two values of agglomeration parameter   are chosen to plot the 

figure 0.2, 0.5    and the volume of CNTs is 0.1.CNTV   It is worth to note from Figure 4 

that the layer thickness ratio and agglomeration parameters significantly affect the frequency 

parameters of the sandwich beam. More over, the increase of the core thickness results in a 

decrease in the frequency parameter. This also means that as the thickness of the face sheets 

increases leads to is an increase in the beam stiffness. The dependence of the frequency 

parameter upon the layer thickness ratio is influenced by the agglomeration parameters. The 

frequency parameter curves in Figure 4 will be closer when the parameter   is larger. This is 

more visible when the value of   is smaller, as shown in Figure 4(a). The results in Figure 4 

indicate that the highest frequency parameter is attained at ,  as the cases 0.2    in 

Figure 4(a) and 0.5   in Figure 4(b), while the lowest value occurs where the largest 

difference exists between the two agglomeration parameters, as shown in Figure 4(a) when 

0.2  and 1  .  

 
Figure 4. Fundamental frequency parameter of sandwich beam at   0.2  and   0.5  , 0.1CNTV  . 

Table 2. Fundamental frequency parameters of (1-2-1) and (2-1-2) beams. 

 1   0CNTV   0.02CNTV   0.05CNTV   0.1CNTV   0.2CNTV   0.3CNTV   

(1-2-1) 

0.1   2.8372 2.9295 2.9767 3.0014 3.0078 3.0006 

0.5   2.8372 2.9801 3.1471 3.3448 3.5805 3.7122 

1   2.8372 2.9904 3.2009 3.5106 4.0206 4.4307 

(2-1-2) 

0.1   2.8372 2.9403 2.9914 3.0154 3.0151 2.9998 

0.5   2.8372 2.9975 3.1830 3.3995 3.6513 3.7865 

1   2.8372 3.0092 3.2433 3.5837 4.1353 4.5711 
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Table 2 shows the frequency parameters of  (1-2-1) and (2-1-2) beams for different values 

of  the parameter   and the CNTs volume fraction 
CNTV . For CNTRC beams, an increase in 

agglomeration parameter   means that the agglomeration of CNTs decreases, leading to an 

increase in frequency parameter, regardless of the thickness ratio. In case of no agglomeration 

(fully dispersed CNTs), as 1    in Table 2, the frequency parameter is the highest. As 

expected, an increase of the 
CNTV  results in an increase of the frequency parameter, especially 

for beams reinforced with fully dispersed CNTs. However, looking more closely at Table 2, one 

can see that for the case of severe CNT agglomeration  0.1  , the increase of the CNT volume 

fraction has a negative influence on the frequencies, namely the frequencies are decreased when 

increase the CNT volume fraction, especially for the beam associated with thicker face sheets. 

This phenomenon has also been pointed out by Kamarian et al. [10] in their vibration analysis of 

non-uniform piezoelectric sandwich beams. 

The effect of the CNTs volume fraction on the frequency parameter of (1-2-1) and (2-1-2) 

beams is once again illustrated in Figure 5 corresponding to the agglomeration parameter

0.2  . An increase of the CNTs volume fraction results in an increase of the frequency 

parameter. Furthermore, the increase in the CNTs volume fraction 
CNTV  also affects the 

dependence of frequency parameter   on agglomeration parameter  . The influence of the 

parameter   on the parameter   becomes even more pronounced for an increasing number of 

CNTs. Besides, it is easy to see from the Figure 5 that the CNTs volume fraction is more 

effective on the vibration behaviour of the CNTRC sandwich beams when the value of two 

agglomeration parameters gets close to each other. Opposite, as a discrepancy between   and 

leads to a decrease in the effect of CNTs volume fraction on the fundamental frequencies. Thus, 

in case of severe agglomeration ( 0.2  ), the use of many CNTs does not significantly improve 

the vibration behaviour of the beam. All of these phenomena can be seen more clearly for beams 

with thicker face sheets, as shown in Figure 5(b). 

 

Figure 5. Fundamental frequency parameter of (1-2-1) and (2-1-2) beams at   0.2  . 
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Similar conclusions can be achieved from Figures 4, 5 and Table 3, Figure 6 also illustrates 

that an increase in the CNTs volume fraction leads to a sharp increase in the frequency 

parameter, which happens when the agglomeration is not much. Further, the effect of the layer 

thickness ratio on the frequency parameter of the beam is also more visible when the 

agglomeration is reduced, the beams with thicker face sheets will have a higher frequency 

parameter. 

 

Figure 6. Fundamental frequency parameter of (1-2-1) and (2-1-2) beams at   1  . 

 

Figure 7. Fundamental frequency parameter of (1-2-1) and (2-1-2) beams at 0.1CNTV   
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The influence of two agglomeration parameters on the frequency parameters of (1-2-1) and 

(2-1-2) beams is again clearly seen in Figure 7. It is found that the frequency parameter curve 

behavior in Figure 7 is similar to that of the Young’s modulus curve as shown in Figure 3. That 

is, the frequency parameter of the beam increases with the increase of agglomeration parameter

,  the parameter   reaches its maximum value at   , and then gradually decreases. 

6. CONCLUSIONS 

The free vibration analysis of the agglomerated CNTRC sandwich beams considering the 

effect of CNT agglomeration was studied using an efficient finite beam element. The beam 

consists of a homogeneous core and two CNTRC face sheets. The Eshelby-Mori–Tanaka 

approach was employed to derive the effective material properties of the sandwich beams. The 

element is derived by using the hierarchic functions to enrich the conventional Lagrange and 

Hermite interpolations. Numerical investigation reveals that the enriched beam element is super 

convergent in evaluating the frequency parameters of the sandwich beams. The effects of the 

layer thickness ratio, agglomeration parameters and CNTs volume fraction on vibration 

behaviour of the sandwich beams have been examined in detail. Results presented the fact that 

free vibrations of CNTRC sandwich beams are seriously affected by CNTs agglomeration. The 

use of more reinforced CNTs as well as increasing the thickness of the face sheets will no longer 

be useful when CNTs agglomeration becomes severe. 
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