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Abstract. In this study, CuInS2 materials were synthesized by hydrothermal method. The effect 

of different reaction times was investigated. The structure and morphology of the materials were 

characterized by XRD, SEM, TEM, UV-Vis and EDX measurement methods. The obtained 

results showed that with a reation time of 24 h, the CuInS2 sample (CIS-24) had an average 

particle size of about 50 nm and a band gap energy value of Eg = 1.48 eV, with the ability to 

strongly absorb visible light. The photocatalytic activity of CIS-24 was investigated by the 

degradation of dibenzothiophene under visible light irradiation. The photocatalytic efficiency 

reached a maximum of 97.9 % at an initial concentration of 500 ppm after 5 h of reaction at 70 
o
C with a catalyst dosage of 50 mg and 1.0 mL of H2O2 as an oxidant. 
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1. INTRODUCTION 

As is well known, the presence of sulfur-containing organic compounds in liquid 

hydrocarbon fuels is a cause of air pollution and acid rain due to the release of sulfur oxides 

(SOx) during fuel combustion. Many countries have established regulations requiring a 

maximum sulfur content of 10 ppm in gasoline to ensure environmental standards beginning in 

2017. Therefore, the deep desulfurization technology in fuel has been receiving research 

attention [1 - 5]. Due to the use of hydrodesulfurization (HDS) technology in petrochemical 

refineries, a high temperature of 300 - 400 
o
C and 100 atm of pressure are required, and a large 

amount of hydrogen gas is required to separate heterocyclic compounds such as thiophene, 

benzothiophene (BT), dibenzothiophene (DBT), especially 4,6 alkyl DBT, etc. Due to the 

presence of aromatic rings in the molecules, these compounds are difficult to remove, thus 

enhancing the aromatic properties [6]. In addition, many methods have been studied, such as 

biological desulfurization (BDS) [7], adsorbent desulfurization (ADS) [8] to achieve deep 

desulfurization with limited threshold. Sulfur concentrations in diesel fuel are expected to be 

regulated at 5 ppm weight (ppmw). Among these methods, oxidative desulfurization (ODS) 

mailto:phamxuannui@humg.edu.vn


 
 
A high effective CuInS2 photocatalyst for oxidative desulfurization of dibenzothiophene in fuel oil 
 

529 

technology is one of the effective methods that complement HDS. This technology uses an 

oxidizing agent for the oxidation of sulfur-containing organic compounds to a strong polarizer 

and the product is separated by adsorption or extraction. ODS technology operates under mild 

conditions (atmospheric pressure and temperature below 100 
o
C) with high selectivity [9, 11]. 

Therefore, ODS technology is considered a promising sulfur separation technology with high 

efficiency and low production cost. 

Furthermore, photocatalytic oxidation of sulfur-containing compounds in fuels has been 

studied by scientists. Recently, Pham et al. [12, 13] reported the use of Ag@AgBr/Al-SBA-15 

green catalyst and Ti-containing Al-SBA-15 mesostructured catalysts for the photocatalytic 

oxidation of DBT under sunlight irradiation. Feng et al. [14] have shown that photocatalytic 

oxidation is effective to remove sulfur-containing organic compounds in fuel oil and pollutants 

such as rhodamine B (RhB) present in wastewater by using Pt-RuO2/TiO2 photocatalysts. Aazam 

et al. [15] studied the photocatalysis of cyanide oxidation under visible light by Pt phase AgInS2 

nanoparticles. Among the various photocatalysts, metal sulfides such as ZnIn2S4, MInS2 (M: Ag, 

Cu) are the most common photocatalysts and have been used for hydrogen energy development 

because of its non-toxicity, high stability and ability to absorb visible light over a wide                                 

range [16 - 19]. 

CuInS2 materials are known to be typical p-type catalysts with potential for hydrogen 

separation from water, photocatalysis for CO2 reduction, and treating organic pollutants [20 - 

25]. Along with that, the high absorption efficiency (~10
5
 cm

-1
) [1] and the near-optimal 

bandgap energy (~1.53 eV) allow to fully absorb the energy of sunlight with wavelength greater 

than 800 nm and obtain high absorption efficiency per unit length. Besides, sulfur-containing 

organic compounds such as BT, DBT and DBT derivatives are catalyzed by photocatalysts 

combined with visible light irradiation where they are oxidized to sulfone or sulfide compounds. 

These compounds are separated from fuel by adsorption or extraction methods. Thus, CuInS2 

material acts as an effective photocatalyst in the oxidative desulfurization of DBT in fuel. 

In this paper, ternary sulfide semiconductors of CIS were synthesized for use as 

photocatalysts and demonstrated their excellent photocatalytic performance in the degradation                      

of DBT. 

2. EXPERIMENTAL 

2.1. Materials 

All chemicals, including sodium dodecyl sulfate (C12H25NaO4S, 99.1 %), dibenzothiophene 

(DBT, 99.0 %), indium chloride (InCl3, 98 %), n-octane (C8H18, 99.0 %), thioacetamide 

(C2H5NS, 99.0 %), ethylene glycol (C2H6O2, 99.0 %), cupper(I) iodide (CuI, 99.2 %), ethanol 

(C2H5OH, 99.0 %) and hydroperoxide (H2O2, 30 %), were purchased from Sigma-Aldrich. 

Deionized water (DI) was used in all synthesis processes. 

2.2. Synthesis of CuInS2 photocatalyst 

CuInS2 material was synthesized by a simple hydrothermal method, specifically as follows: 

2.8838 g of sodium dodecyl sulfate (SDS) was dissolved in 50 mL of ethylene glycol and heated 

at 70 
o
C for 15 min. Next, the above solution was added with 0.39 g of CuI, 0.44236 g of InCl3, 

0.7513 g of thioactemide and continued to be heated for 30 min to homogenize the solution. 

Then, the solution was put into a hydrothermal Teflon flask at 180 
o
C for different times of 9, 12 
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and 24 h. The obtained solid with a black color was washed thoroughly with deionized water and 

ethanol at 60 °C for 3 h. Finally, the catalytic samples were obtained after drying at 80 °C for 5 

h, and the samples were designated by time, namely CIS-9, CIS-12 and CIS-24. 

2.3. Characterization 

The X-ray diffraction pattern was recorded on a D8–Advance Bruker instrument with 

CuK  emission (wavelength λ = 1.54 Ǻ ), power 40 kV, 40 mA. The morphology was 

determined on a Hitachi S4800 (Japan) scanning electron microscope (SEM) and CIS 

nanoparticles were then examined by transmission electron microscopy (TEM, Leica IEO 906E). 

Diffuse reflectance spectroscopy (DRS) was obtained with a Shimadzu-UV–2550–8030 

spectrometer in the range of 190 - 800 nm with a slit width of 5.0 nm and a light source with a 

wavelength of 360 nm at low temperature (room level). In addition, energy X-ray spectroscopy 

(EDX) was used to determine the composition of the material. 

2.4. Photocatalytic activity test 

In DBT photocatalytic oxidation experiments, visible light was used as the energy source. 

The “model” fuel sample containing DBT (500 ppm) was mixed with 0.2875 g of DBT in 100 

mL of n-octane solvent. In experimental batches, 50 mL of DBT and 50 mg of CIS photocatalyst 

were placed in a three-necked flask immersed in water and stirred on a magnetic stirrer at 500 

rpm. Before the photocatalytic oxidation process started under visible light irradiation, the 

mixture was placed in the dark for 30 min to reach adsorption-desorption equilibrium. The 

suspension was then irradiated under a 50 W light-emitting diode (LED) lamp with the 

wavelengths ranging from 400 to 700 nm, corresponding to a visible light region. The 

experiments were surveyed according to the parameters of temperature and oxidant content over 

time. The degradation of DBT was determined based on the absorbance at λmax = 325 nm using a 

UV–Vis spectrophotometer. The degradation efficiency was calculated as follows: 

                                                         (1) 

where Co represents the initial DBT concentration and Ct represents the residual DBT 

concentration at each irradiation interval. 

3. RESULTS AND DISCUSSION 

3.1. Characterization of samples 

X-ray diffraction (XRD) pattern of CIS nanoparticles at different reaction times is shown in 

Figure 1. All of the main reflection peaks of CIS at 2θ of 27.4
o
, 31.6

o
, 44.8

o
, and 55.4

o
 are 

assigned to the (112), (004), (204)/(220), and (116)/(312) crystal planes of chalcopyrite-type CIS 

(JCPDS card No. 38-0777), respectively [26]. The sample is indexed as a tetragonal phase which 

is very close to the values in the literature (JCPDS No. 38-0777). After being proceeded for 6, 

12 h, besides the diffraction peak of a tetragonal CIS structure phase, the existence of a 

hexagonal CuS structure is found (JCPDS card No. 01–1281). However, the diffraction peak 

intensity of the CIS phase becomes gradually stronger as the reaction time increases up to 24 h 

while that of the CuS phase completely disappears, which indicates the improved purity and 

crystallinity of the CIS crystals, that is, after the reaction time was prolonged to 24 h, pure CIS 

with high crystallinity was obtained. Thus, the CIS-24 was used for further study. 
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Figure 1. XRD diffraction patterns of CIS synthesized at 180 
o
C with different reation times. 

The morphology of CIS-24 was investigated using SEM images in Figure 2, showing coral-

like microstructures composed of nano-rods [27]. To further investigate the morphological 

details, TEM images of the sample is shown in Figure 3, demonstrating that the CIS sample 

consists of nanoparticles with spherical microstructure forming homogeneous blocks. The 

average size of the particles is about 50 nm. 

Additionally, the FT–IR spectrum of the CIS-24 sample is shown in Figure 4a. The 

absorption bands between 1651 and 1556 cm
-1

 correspond to the stretching vibrations of the S–

In and S–Cu bonds [28]. Besides, two other very weak peaks at about 2985 and 2883 cm
-1 

correspond to the stretching vibration of the sp
3
C–H absorption. This may be due to traces of 

SDS used during the synthesis of CIS. A new band located at 1062 cm
-1

 attributes to the 

stretching vibration of the S–O bond which could be formed through the reaction of unsaturated 

S vacancies in CIS and O atoms in physically adsorbed water. 

 

Figure 2. SEM images of the synthesized CIS-24 sample. 
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Figure 3. TEM images of the synthesized CIS-24 sample. 

 

Figure 4. (a) FT-IR spectrum, and (b) EDX spectrum of the synthesized CIS-24 sample. 

 

Figure 5. (a) Diffuse reflectance spectrum, and (b) bandgap energy of the CIS-24 sample. 

To detect the coexistence of the elements present and their molar proportions, EDX 

analysis of the CIS sample was carried out. As shown in Figure 4b, the Cu, In and S species 

were all detected in the CuInS2 sample and the molar ratio of Cu to In and S was close to 1:1:2 

as a percentage of atoms which is consistent with the stoichiometry of CuInS2 [29]. 

UV-Vis diffuse reflectance spectroscopy was also used to confirm the optical properties of 

the material. It can be seen that CIS-24 exhibits absorption in the visible light range (λ = 200 -
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500 nm) (Figure 5a). The bandgap energy of the sample can be calculated by the plot of 

transformed Kubelka–Munk functions, and the bandgap energy of the photocatalyst is obtained 

using Eq. (2). 

αhν = A(hν – Eg)
n/2

                                                  (2) 

where α, v, Eg, and A are the absorption coefficient, light frequency, bandgap, and a constant 

representing the proportion of reflected light, respectively. 

Following the linear line passing through the inflection point of the horizontal shear curve 

(Figure 5b) gives the bandgap energy value of CIS-24 as Eg = 1.48 eV, consistent with the 

reported value [30]. This result demonstrates the strong visible light absorption ability of the 

material and the potential use of CIS as a photocatalyst operating under visible light irradiation. 

3.2. Photodegradation of DBT under sunlight irradiation 

The photocatalytic activity of CIS-24 was investigated for the degradation of DBT under 

visible light irradiation at different temperatures of 50 
o
C, 60 

o
C and 70 

o
C with 50 mL of DBT 

(250 ppm DBT in n-octane), 1 mL of H2O2 and 50 mg of photocatalyst (Figure 6a). The results 

showed that in the dark, at all three temperatures above, the photocatalytic reaction did not occur 

and the adsorption capacity of DBT increased from 16.3 % to 22.35 % when the temperature 

increased from 50 
o
C to 70 

o
C, respectively.  

The results obtained after visible light irradiation and using H2O2 as oxidizing agent 

showed that the conversion of DBT increased with temperature (Figure 6b). Specifically, the 

conversion reached 73.89 %, 75.6 % and 92.33 % at reaction temperatures of 50 
o
C, 60 

o
C and 

70 
o
C, respectively, within 5 h. Thus, at a higher temperature (70 

o
C) the rate of free radical 

generation increased, leading to an increase in DBT conversion. 

 

Figure 6. DBT conversion on CIS-24 catalyst (a) at different temperatures (Reaction conditions:                   

VDBT = 50 mL, VH2O2 = 1.0 mL, mcatalyst = 50 mg), and (b) with different amounts of H2O2 oxidizing agent 

under visible light irradiation (Reaction conditions: VDBT = 50 mL, T = 70 
o
C, mcatalyst = 50 mg). 

The amount of oxidizing agent H2O2 has a significant effect on the conversion of DBT in 

the photocatalytic reaction. With 0.5 mL of H2O2, the conversion reached only 69.5 %. 

However, with an increase in the amount of H2O2 from 1.0 to 1.5 mL, the efficiency of DBT 

conversion increased significantly from 92.33 % to 97.9 % after 5 h. As is known, H2O2 is a 

strong oxidizing agent and produces hydroxyl radicals when exposed to light. When low 

concentrations of H2O2 (< 0.5 mL) are used, the reaction between hydroxyl radicals and H2O2 
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occurs, the OH radicals needed to facilitate the oxidation reaction become more difficult. 

Therefore, the sulfur removal efficiency is lower when using a small amount of oxidizing agent. 

Because of narrow bandgap of CIS (Eg = 1.48 eV), it can be excited by visible light. The 

surface of the CIS photocatalyst is irradiated by this light, generating electrons (ē) and holes 

(h
+
). The photogenerated electrons on the conduction band (CB) of CIS transfer to the valence 

band (VB). In the next step, the excited electrons on CB are captured by oxygen molecules 

adsorbed on the surface, generating superoxide anions: 

(O2
−): O2 + ēO2

− 
                                                 (3) 

 Also, the presence of h
+
on the CIS surface leads to the formation of hydroxyl radicals 

(HO):  

H2O + h
+
OH                                                  (4) 

These species oxidize DBT adsorbed on the catalyst surface. The possible mechanism for 

the photocatalytic oxidation of DBT is as follows [31, 32]: 

 
Scheme 1. Schematic diagram of the photocatalytic oxidation of DBT. 

3.3. Kinetics of photocatalytic degradation 

From the above-mentioned experiments, all the optimal reaction conditions were used in 

the catalytic degradation. The optimum conditions were 1.5 mL H2O2, 50 mL DBT (250 ppm 

DBT in n-octane) and 50 mg catalyst with reaction temperatures of 50 
o
C, 60 

o
C and 70 

o
C. The 

photocatalytic degradation of DBT as a function of irradiation time in the presence of the CIS-24 

catalyst can be described by a first-order reaction, as shown in expression (5): 

                                                              (5) 

where Ct and Co are concentrations at time t and initial time, respectively, kp is the first order 

reaction rate constant and t is the irradiation time (h). The equation shown in Figure 7 is 

analyzed by first-order kinetics and the rate constant can be deduced from expression (3). 

The first-order kinetics of the desulfurization reaction with the CIS-24 catalyst is 

determined at different temperatures (Figure 9). Specifically, y = 0.123x + 0.003 with 

correlation coefficient R
2 
= 0.9871, y = 0.0624x + 0.1037 with R

2 
= 0.9808, y = 0.0044x + 0.007 

with R
2 

= 0.9856 at temperatures of 70 
o
C, 60 

o
C, 50 

o
C, respectively. All linear graphs are 

consistent with first-order reaction (R
2 
> 0.98). The rate constants (kp) at 70 

o
C, 60 

o
C, and 50 

o
C 

were measured to be 0.7923, 0.4565 and 0.256 h
-1

, respectively. The half-life of the experiment 

was calculated by replacing Ct with Co/2. 

                                                         (6) 

where t1/2 is the half-life (h). 
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According to the kinetic study, the half-life (t1/2) for the DBT degradation reactions was 

determined to be 0.78, 1.51 and 2.7 h at reaction temperatures of 70 
o
C, 60 

o
C, 50 

o
C, 

respectively. These results indicate that the relatively fast degradation rate of DBT increases 

with increasing reaction temperature up to 70 °C, which is consistent with the increase in 

reaction temperature and reaction rate according to the Arrhenius equation, resulting in higher 

DBT conversion [31]. 

Therefore, the photocatalytic oxidative degradation of DBT in n-octane solvent using 50 

mg of CIS-24 was a pseudo-first-order reaction. 

 

Figure 7. Pseudo-first-order kinetic model for DBT degradation by photocatalytic oxidative 

desulfurization at different temperatures. 

 

Figure 8. Arrhenius plot for the photocatalytic degradation of DBT. 

The dependence of the rate constant k on the temperature response is expressed by the 

Arrhenius equation: 

                                                               (7) 

Accordingly, 
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                                                      (8) 

where Ea is the activation energy, A is the pre-exponential constant , R is the gas constant, and T 

is the reaction temperature (K). The Arrhenius diagram for a first-order reaction is shown in 

Figure 8. The apparent activation energy (Ea) was calculated from the slope and intercept of the 

Arrhenius plot, giving a value of 48.22 kJ/mol. This value is similar to the result of the oxidation 

of DBT in H2O2/acetic acid using polyoxometalate as a catalyst. Lorena et al. [33] applied first-

order rate constants to the oxidation of DBT at different temperatures and obtained an Ea value 

of 43.4 kJ/mol. 

4. CONCLUSIONS 

In conclusion, a multi-metallic sulfide material of CIS was successfully synthesized by a 

simple hydrothermal method using thioacetamine, CuI and InCl3. CIS nanoparticles were formed 

with an average particle size of 50 nm and a low band gap energy Eg = 1.48 eV. The results of 

photocatalytic degradation of DBT using CIS catalyst showed that the sulfur removal efficiency 

reached 97.76 % with an initial concentration of 500 ppm after 5 h at a reaction temperature of 

70 
o
C, using 1.5 mL of H2O2 and 50 mg of catalyst under visible light irradiation. The 

photocatalytic oxidative degradation of DBT using CIS-24 followed pseudo-first-order kinetics 

and the activation energy was 48.22 kJ/mol. 
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