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Abstract. Green synthesis approaches have attracted much attention in recent years since they 

address sustainability-related issues better than conventional synthesis methods. New research 

fields in green nanoscience are being developed as a result of the incorporation of green 

chemistry principles into nanoscience. In this paper, the successful microwave-assisted green 

synthesis of MoS2 nanoparticles in a single pot using polyol solvents such as ethylene glycol and 

glycerol is demonstrated. The coexistence of 1T and 2H phases in MoS2 nanomaterials was 

determined using advanced techniques such as XRD, Raman, XPS, and TEM images. The 

highest 1T proportion obtained was 84.5 % when compared to the 2H phase. The reaction 

mechanism and the phase transition between 1T and 2H are described and illustrated. The role of 

polyol solvents in the practical synthesis of nano MoS2 under microwave heating is also 

evaluated and explained. Due to the ability of the metallic 1T phase to enhance electrical 

conductivity, it is believed that hybrid nanostructures exhibit superior electrochemical 

performance for energy storage and conversion applications.  

Keywords: nano MoS2, hybrid phase 1T/2H-MoS2, polyol solvents, microwave synthesis, green chemistry 

Classification numbers: 2.4.2, 2.4.4, 5.2.1 

1. INTRODUCTION 

The metallic 1T phase of MoS₂ nanomaterials shows enhanced electron transport, ion 

diffusion, and catalytic activity compared to the semiconducting 2H phase, owing to its larger 

interlayer spacing and higher conductivity [2 - 12]. In 1T/2H mixed-phase heterostructures, 

partial phase transformation reduces the kinetic barrier and promotes charge transfer, increasing 

active sites and improving catalytic and electrochemical performance [6, 12 - 15]. These hybrids 

exhibit high specific capacitance, excellent rate capability, and long-term durability, making 

them ideal for supercapacitor electrodes [7, 16]. 

Environmentally friendly synthesis approaches-particularly green methods using 

microwave heating-are gaining attention for their simplicity, energy efficiency, and 
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reproducibility [17 - 19]. Microwave heating rapidly generates heat at the interfaces of polar 

solvents, enhancing reaction rates and reducing solvent use [20 - 23]. The choice of solvent is 

critical: polyols such as ethylene glycol (EG) and glycerol (G) are widely used due to their high 

boiling points, suitable viscosity, and ability to support nanoparticle formation under microwave 

irradiation [24 - 26]. 

This study employs a green, microwave-assisted approach to synthesize 1T/2H-MoS₂  

nanostructures using polyol solvents. It investigates their structure, formation mechanism, and 

electrochemical potential for energy storage applications. 

2. MATERIALS AND METHODS 

To synthesize MoS₂ nanostructures, 1.24 g of ammonium heptamolybdate tetrahydrate 

((NH₄)₆Mo₇O₂₄·4H₂O) and 2.28 g of thiourea (CSN₂H₄) were dissolved in 60 mL of solvent—

either ethylene glycol (EG), glycerol (G), or a 1:1 EG/G mixture—and stirred at 60 °C for 30 

min. The solution was then microwaved at 240 W for 15 min, reaching the solvents’ boiling 

points. After cooling, black precipitates were washed with ethanol, centrifuged, and vacuum 

dried at 80 °C for 5 h. The samples were labeled S1 (EG), S2 (EG+G), and S3 (G). 

Structural analysis was performed via XRD (Bruker D8 Advance, Cu Kα, 5°–80°, 1°/min, 

step 0.0194°) and Raman spectroscopy (Labram HR VIS, 632.8 nm, 1 mW, 300 lines/mm 

grating). TEM images were acquired using JEOL-TEM-1400 at 200 kV (bright field mode). 

XPS analysis (ESCALAB 250, Al Kα) was conducted to assess surface composition; binding 

energies were calibrated to C 1s at 284.6 eV, with constant FWHM for doublets. 

3. RESULTS AND DISCUSSION 

X-ray diffraction (XRD) analysis is a commonly used technique to determine the crystal 

structure and size, as well as the crystalline phase and purity of a crystal. During the microwave 

irradiation process, intercalation and heat treatment can significantly impact the crystal structure 

of the host materials, resulting in a phase transition from semiconducting (2H) to metallic (1T), 

as seen in the XRD pattern presented in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. XRD patterns of S1-EG, S2-EG+G, and S3-G.  

To determine the XRD spectrum of mixed-phase 1T/2H-MoS2, a comparison with the XRD 



 
 

Nguyen Thi Minh Nguyet, Vuong Vinh Dat, Nguyen Huu Huy Phuc, Le Van Thang 
 

 

974 

(A) 
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(A) 

spectrum of bulk 2H-MoS2 is necessary [1, 27]. Figure 1 shows the XRD patterns of the three 

samples (S1-EG, S2-EG+G, and S3-G). All samples exhibit XRD peaks at 31.9
o
, 43.3

o
, and 

56.8
o
, which correspond to the (100), (103), and (110) planes of MoS2, respectively. However, 

the characteristic peak of the (002) plane of 2H-MoS2 at ~14.41
o
 is absent and instead 

exhibits peak splitting at lower and higher 2θ angles (red dashed rectangle in Figure 1). 

This disordered structure matches the previously reported ammoniated 1T-MoS2 [7], indicating 

the formation of a 1T/2H-MoS2 hybrid phase. The large interlayer spacing of the as-prepared 

MoS2 in those of S1-EG (2θ ~ 10.6
o
), S2-EG+G (2θ ~ 10.9

o
), S3-G (2θ ~ 10.9

o
) is attributed to 

the high content of 1T-MoS2 in these samples [28]. 

Figure 2A displays the Raman spectra of S1-EG, S2-EG+G, and S3-G, which were 

synthesized using various solvents such as EG, EG+G, and glycerol (G). Table 1 summarizes the 

detected vibrations in all three samples. A more detailed view of the vibrational modes is 

presented in Figure 2C. The observed strong peaks at 141, 190, 230, and 331 cm
-1

, which 

correspond to the stretching vibration of Mo–Mo and the phonon mode of 1T-MoS2, indicate the 

presence of 1T-MoS2 in all samples [1, 28, 29]. The A1g to J1 intensity ratio in a spatially 

resolved Raman spectra of MoS2 can be utilized to determine the phase content, as it is inversely 

proportional to the amount of 1T phase present. In S1-EG, S2-EG+G, and S3-G, the J1 peak is 

visible, but the A1g/J1 value is extremely low and cannot be seen in Figure 2B when zoomed in, 

indicating a high 1T phase content. The increase in the A1g/J1 value indicates a decrease in 

the 1T phase content and the formation of a mixed phase of 1T/2H [30]. This explains the 

absence of A1g peaks in the Raman spectra of samples S1-EG, S2-EG+G, and S3-G, as shown in 

Figure 2B. Additionally, the low crystallinity and lack of 2H phase in the MoS2 material may 

account for the significant reduction in the intensity of typical E
1

2g and A1g peaks over 1T/2H-

MoS2 in S1-EG, S2-EG+G, and S3-G [1, 13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (A) Raman spectra of S1-EG, S2-EG+G, S3-G; (B) Maginified Raman signals of green area from 

Figure 2A;  and (C) Symmetric displacement of Mo and S atoms in E1g, E
1
2g and A1g vibrational modes. 

no signal 
of A1g 

(C) 
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Table 1. Summary of vibration modes (position peaks) in S1, S2, and S3 (cm
-1

). 

Table 2. 1T and 2H phase proportions in MoS2 nanomaterials synthesized in different polyol solvents. 

PHASE 

 

PHASE FRACTION 

S1-EG S2-EG+G S3-G 

2H 15.5 % 19.8 % 20.8 % 

1T 84.5 % 80.2 % 71.2 % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Mo 3d and S 2s XPS spectra of 1T/2H-MoS2 in S1-EG, S2-EG+G, and S3-G. 

Sample J1 
Phonon 

mode 
J2 E1g J3 E

1
2g A1g 

S1-EG ~141.6 ~ 190 ~230 ~278 ~331 ~372 - 

S2-EG+G ~141.5 ~ 190 ~230 ~278 ~331 ~372 - 

S3-G ~141.9 ~ 190 ~230 ~278 ~331 ~372 - 



 
 

Nguyen Thi Minh Nguyet, Vuong Vinh Dat, Nguyen Huu Huy Phuc, Le Van Thang 
 

 

976 

XPS spectra (Figure 3) confirm the formation of MoS₂ with signals for both 1T and 2H 

phases, and trace MoO₃. The Mo 3d region shows characteristic doublets for Mo⁴⁺: 
~228.4/231.7 eV for 1T-MoS₂ and ~229.8/233.2 eV for 2H-MoS₂ [1, 3, 7, 8, 31 - 36]. These 

binding energies shift relative to elemental Mo (228/231.1 eV), reflecting phase-dependent 

electronic environments The ~3.2 eV splitting and 3:2 intensity ratio between 3d₅/₂ and 3d₃/₂ 
align with expected Mo oxidation states [37]. In 1T-MoS₂, the lower binding energies (~1.3 eV 

downshift from 2H) indicate higher electron density, consistent with earlier studies [29, 34, 38, 

39]. S 2p spectra show peaks at ~161.5 and 162.8 eV for S²⁻, also shifted in 1T-MoS₂ due to 

electron-rich Mo–S bonds [40, 41]. A minor peak near 225.9 eV (S 2s) supports Mo–S bonding, 

while a peak around 235 eV suggests Mo⁶⁺ in MoO₃, likely from surface oxidation [38]. 

The relative concentration of the 1T and 2H phases in various solvents was calculated using 

XPS as the ratio between the Mo 3d peak areas. Each phase's fraction was calculated following 

the equation (1) below and then summarized in Table 2 [42]. All the MoS2 products comprise 

both phases - 1T and 2H - but their compositions vary depending on the solvents (reaction 

temperatures). Notably, 1T phase proportion was reduced when increasing the reaction 

temperatures (TEG < T(EG+G) < TG) [43]. The low temperature of MoS2 synthesized in ethylene 

glycol (EG) enabled such a rich composition of the 1T-phase, as 84.5 % as calculated in Table 2 

with added mechanical and thermal stability due to co-existence with the 2H-phase. Because of 

the presence of a highly conductive 1T phase rather than a 2H phase, these hybrid materials have 

the potential to improve the electrochemical properties of batteries or capacitors. 

                     =
                         

  (     )   (     )   (     )            
        (1) [42] 

High-resolution TEM (HRTEM) was performed to visualize the 1T/2H crystal surface 

structures with lattice fringes (Figure 4). The enlarged red rectangle in Figure 4A, depicted in 

Figures 4B and 4C, reveals the trigonal lattice area of the 1T phase and the honeycomb lattice 

area of the trigonal prismatic coordination in the 2H phase. As depicted in Figure 4D, the 

interlayer distances were measured to be 0.236 nm, which is given to the d spacing of the (100) 

planes of the 1T phase MoS2 [44]. 

Figure 5 illustrates the formation of diverse morphologies in the MoS2 materials. When 

comparing the nanoparticle morphology of the S1-EG and S3-G samples, the TEM images of the 

S2-EG+G sample reveal the presence of numerous nanoflake wrinkles. These wrinkles are 

agglomerates or aggregates composed of homogeneous MoS2 particles or flakes. The particle 

boundaries are more distinct in S3-G compared to S1-EG and S2-EG+G. In S1-EG and S2-

EG+G, the flakes exhibit corrugation, indicating the flexible and ultrathin nature of the material. 

The integration of TEM images with XRD, Raman, and XPS data offers compelling 

evidence that MoS2 materials have been successfully synthesized at the nanoscale, exhibiting 

diverse morphologies. Remarkably, the TEM images reveal variations in the size and shape of 

metal sulfide nanoparticles, even when employing the same microwave synthesis route. These 

findings suggest that microwave irradiation can selectively influence the nucleation and growth 

rates of distinct compounds. 
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Figure 4. (A) HRTEM images of S1-EG; (B) Image of the region enclosed by the redrectangle of (A) and 

schematic structure of the unit cells of the 1T phase; (C) Image of the region enclosed by the red rectangle 

in (A) and schematic structure of the unit cells of the 2H phase; (D) Measurement of interlayer distances 

by Image J to calculate the d spacing between the (100) planes of 1T phase MoS2. 

 

 

 

 

 

 

 

 

 

 

 
      

                 

  

 
      

         

(D) 

S1-EG 

S2-EG+G 



 
 

Nguyen Thi Minh Nguyet, Vuong Vinh Dat, Nguyen Huu Huy Phuc, Le Van Thang 
 

 

978 

 

 

 

 

 

 

 

 

Figure 5. TEM images of 1T/2H-MoS2 in S1-EG, S2-EG+G and S3-G. 

Explaining the mechanism for synthesis reaction and proposing the structure of as-

prepared material 

The probable mechanism of the reaction of microwave heating synthesis of 1T/2H-MoS2 

nanoparticles is presented by the following steps:  

(1) Dissociation: Two types of water are present in the precursor: structural water, which is 

bound chemically and is an integral part of (NH4)6(Mo7O24)⋅4H2O, and water present in ethylene 

glycol. Microwave-induced dissociation reactions of AHM and TU species in polyol solvents are 

likely to occur according to the following equations: 

(NH4)6(Mo7O24) ⋅4H2O+ H2O [Mo7O24]
6-

+ 6 NH4
+    

 (2) 

[Mo7O24]
6-
 6[MoO4]

2- 
+ Mo

6+       
(3) 

H2NCSNH2 NH4
+
 + NCS

-       
(4) 

H2NCSNH2 + H2O  2NH3 + CO2 + H2S     (5) 

(2) Nucleation: Initially, MoS2 nanocrystal seeds are formed due to the reaction between 

AHM and thiourea. The nucleation process initiates the formation of a new crystalline entity 

from a solution. During the synthesis process, nanocrystal seeds grow into larger crystals and 

gather together to form clusters, while new crystals are continuously formed. The reactions 

proceed                       as follows: 

MoO4
2–

 + H2S + 2H2O → MoO2 + SO4
2–

 + 6H
+
    (6) 

MoO2 + 2H2S → MoS2 + 2H2O      (7) 

(3) Crystal growth: Initially, MoS2 nanocrystal seeds are generated due to the reaction 

between AHM with thiourea. The nanocrystal seeds grow into larger crystals and cluster 

together throughout the synthesis process while new crystals continue to form. Mo atoms and S 

atoms form a chemical bond along the plane direction in a monolayer MoS2, much stronger than 

the Van der Waals force between two monolayers MoS2. As a result of the ability of MoS2 to 

form stable Mo-S bonds in the plane direction, massive MoS2 flakes can be observed in clusters 

S3 - 

G 
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in various solutions such as EG, glycerol, and EG/G. Ammonium ions can penetrate the gap 

between the MoS2 monolayers, resulting in a relatively small flake size and many bulk structures 

with a considerable layer distance. These bulk formations are thought to be generated by the 

aggregation of small MoS2 flakes. 

An illustrated mechanism for the growth of MoS2 crystals involves the presence of 

[Mo7O24]
6-

 ionic groups in a neutral solution. These groups are composed of seven octahedral 

[MoO6] ionic groups that contain Mo and O atoms with three different bond lengths. As 

NH2CSNH2 produces S
2-

 ions, they replace the terminal O atoms connected by the Mo–O ionic 

bond because the bond energy of Mo–S is higher than that of the terminal Mo–O bond [45]. 

Solvents play significant roles in microwave-assisted liquid-phase synthesis. Ethylene 

glycol (EG) and glycerol (G) have a high boiling point (>180 
o
C), are microwave-compatible, 

have an appropriate viscosity, and promote nanoparticle nucleation and development in high 

boiling polyols. The nucleation and growth of nanoparticles in high boiling polyols such as 

ethylene glycol (EG) and glycerol are the primary reasons for their use in nano MoS2 production. 

The polyol acts as a solvent and a stabilizing agent, in this case, restricting particle growth while 

limiting particle agglomeration and aggregation [46]. 

Explaining the phase transitions between 1T and 2H under microwaves irradiation 

2H phase formed in the first stage and then transitioned to a 1T phase via an NH4
+
 ion-

induced phase transformation, similar to intercalated Li
+ 

[47]. The NH
4+

 ion destabilizes the 

trigonal-prismatic 2H-MoS2 structure, favoring the octahedrally coordinated 1T-MoS2. The 

NH4
+
 ion destabilizes the trigonal-prismatic 2H-MoS2 structure and favors the octahedrally 

coordinated 1T-MoS2. 

The microwave irradiation has two effects on the synthesis of 1T/2H-MoS2. First, the 

microwave dipole rotation destroys the weak van der Waals forces between the MoS2 layers and 

increases their interlayer spacing (shift (002) peaks to lower angel in XRD patterns). Second, 

ammonium ions enter the MoS2 interlayers in a non-uniform manner, making the lattice unstable 

for phase transition from 2H to 1T. As previously stated, there are three groups (   ,    ), (   , 

     ), and (   ) of electrons in the 4d orbital of Mo in the 2H phase, of which the (   ) orbital 

is filled with electrons, leaving other orbitals empty and contributing to the phase structure's 

stability (Figure 6). After being exposed to microwave radiation, the ammonium ions in the 

matrix cause an electron to partially occupy the (   ,      ) orbital, reducing its stability and 

facilitating phase conversion from the 2H to the 1T phase. The electrons of Mo are occupied in 

two of the three degenerate orbitals in the two groups (     ,    ) and (   ,    ,    ) of the 1T 

phase (   ,    ,    ). As a result of the three degenerate orbitals being filled, the addition of an 

electron increases phase stability. Because of lattice instability, the interaction between MoS2 

and ammonium ions weakens the top Mo–S bond, causing phase conversion from the 2H to 1T 

phase [29]. 
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Figure 6. (A) 2H-MoS2 crystal structure and ligand splitting for 4d orbitals of Mo atoms with trigonal-

prismatic coordination, (B) 1T-MoS2 crystal structure and ligand splitting for 4d orbitals of Mo atoms 

with octahedral coordination. 

 

Figure 7. An illustration of the phase distribution in a 1T/2H-MoS2 material where 1T is the 

dominant phase. 

The hybrid materials in S1-EG, S2-EG+G, S3-G demonstrate that the 1T phase has a more 

dominating composition than the 2H phase, based on the results of computing the 1T and 2H 

phase compositions using XPS spectra. As a result, we refer to the phase that occupies the upper 

component as the matrix phase and the remaining phase as the randomly dispersed phase inside 

the matrix phase. Figure 7 illustrates the phase distribution of the 1T and 2H phases in the 

synthesized MoS2 hybrid material. 

4. CONCLUSIONS 

In conclusion, the successful synthesis of 1T/2H-MoS2 nanomaterials using a green 

method based on microwave heating and green solvent polyols has been demonstrated. This new 

approach offers several advantages over conventional synthesis methods, including shorter 

reaction times, lower energy consumption, and the use of environmentally friendly solvents. The 

use of polyol solvents including ethylene glycol (EG), ethylene glycol mixed with glycerol (G) 

in a volume ratio of 1:1, and glycerol (G) has been shown to be effective in controlling the phase 

fraction of 1T/2H MoS2, with the highest 1T concentration reaching 84.5 %. This is a significant 

achievement, as the 1T phase has been shown to exhibit superior electrochemical performance 

due to its enhanced electrical conductivity. The reaction mechanism and phase 

transition between the 1T and 2H phases have been described and illustrated, shedding light on 

the complex behavior of this hybrid material. The role of polyol solvents in the practical 

synthesis of nano MoS2 under microwave heating has also been evaluated and explained. 
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