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Abstract. Green synthesis approaches have attracted much attention in recent years since they
address sustainability-related issues better than conventional synthesis methods. New research
fields in green nanoscience are being developed as a result of the incorporation of green
chemistry principles into nanoscience. In this paper, the successful microwave-assisted green
synthesis of MoS, nanoparticles in a single pot using polyol solvents such as ethylene glycol and
glycerol is demonstrated. The coexistence of 1T and 2H phases in MoS, nanomaterials was
determined using advanced techniques such as XRD, Raman, XPS, and TEM images. The
highest 1T proportion obtained was 84.5 % when compared to the 2H phase. The reaction
mechanism and the phase transition between 1T and 2H are described and illustrated. The role of
polyol solvents in the practical synthesis of nano MoS, under microwave heating is also
evaluated and explained. Due to the ability of the metallic 1T phase to enhance electrical
conductivity, it is believed that hybrid nanostructures exhibit superior electrochemical
performance for energy storage and conversion applications.
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1. INTRODUCTION

The metallic 1T phase of MoS, nanomaterials shows enhanced electron transport, ion
diffusion, and catalytic activity compared to the semiconducting 2H phase, owing to its larger
interlayer spacing and higher conductivity [2 - 12]. In 1T/2H mixed-phase heterostructures,
partial phase transformation reduces the kinetic barrier and promotes charge transfer, increasing
active sites and improving catalytic and electrochemical performance [6, 12 - 15]. These hybrids
exhibit high specific capacitance, excellent rate capability, and long-term durability, making
them ideal for supercapacitor electrodes [7, 16].

Environmentally friendly synthesis approaches-particularly green methods using
microwave heating-are gaining attention for their simplicity, energy efficiency, and
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reproducibility [17 - 19]. Microwave heating rapidly generates heat at the interfaces of polar
solvents, enhancing reaction rates and reducing solvent use [20 - 23]. The choice of solvent is
critical: polyols such as ethylene glycol (EG) and glycerol (G) are widely used due to their high
boiling points, suitable viscosity, and ability to support nanoparticle formation under microwave
irradiation [24 - 26].

This study employs a green, microwave-assisted approach to synthesize 1T/2H-MoS,
nanostructures using polyol solvents. It investigates their structure, formation mechanism, and
electrochemical potential for energy storage applications.

2. MATERIALS AND METHODS

To synthesize MoS, nanostructures, 1.24 g of ammonium heptamolybdate tetrahydrate
((NH,)¢Mo0,0,4-4H,0) and 2.28 g of thiourea (CSN,H,) were dissolved in 60 mL of solvent—
either ethylene glycol (EG), glycerol (G), or a 1:1 EG/G mixture—and stirred at 60 °C for 30
min. The solution was then microwaved at 240 W for 15 min, reaching the solvents’ boiling
points. After cooling, black precipitates were washed with ethanol, centrifuged, and vacuum
dried at 80 °C for 5 h. The samples were labeled S1 (EG), S2 (EG+G), and S3 (G).

Structural analysis was performed via XRD (Bruker D8 Advance, Cu Ka, 5°-80°, 1°/min,
step 0.0194°) and Raman spectroscopy (Labram HR VIS, 632.8 nm, 1 mW, 300 lines/mm
grating). TEM images were acquired using JEOL-TEM-1400 at 200 kV (bright field mode).
XPS analysis (ESCALAB 250, Al Ka) was conducted to assess surface composition; binding
energies were calibrated to C 1s at 284.6 eV, with constant FWHM for doublets.

3. RESULTS AND DISCUSSION

X-ray diffraction (XRD) analysis is a commonly used technique to determine the crystal
structure and size, as well as the crystalline phase and purity of a crystal. During the microwave
irradiation process, intercalation and heat treatment can significantly impact the crystal structure
of the host materials, resulting in a phase transition from semiconducting (2H) to metallic (1T),
as seen in the XRD pattern presented in Figure 1.
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Figure 1. XRD patterns of S1-EG, S2-EG+G, and S3-G.

To determine the XRD spectrum of mixed-phase 1T/2H-MoS,, a comparison with the XRD
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spectrum of bulk 2H-MoS; is necessary [1, 27]. Figure 1 shows the XRD patterns of the three
samples (S1-EG, S2-EG+G, and S3-G). All samples exhibit XRD peaks at 31.9°, 43.3° and
56.8°, which correspond to the (100), (103), and (110) planes of MoS,, respectively. However,
the characteristic peak of the (002) plane of 2H-MoS, at ~14.41° is absent and instead
exhibits peak splitting at lower and higher 20 angles (red dashed rectangle in Figure 1).
This disordered structure matches the previously reported ammoniated 1T-MoS, [7], indicating
the formation of a 1T/2H-MoS, hybrid phase. The large interlayer spacing of the as-prepared
MoS; in those of S1-EG (20 ~ 10.6°), S2-EG+G (20 ~ 10.9°), S3-G (20 ~ 10.9°) is attributed to
the high content of 1T-MoS, in these samples [28].

Figure 2A displays the Raman spectra of S1-EG, S2-EG+G, and S3-G, which were
synthesized using various solvents such as EG, EG+G, and glycerol (G). Table 1 summarizes the
detected vibrations in all three samples. A more detailed view of the vibrational modes is
presented in Figure 2C. The observed strong peaks at 141, 190, 230, and 331 cm™, which
correspond to the stretching vibration of Mo—Mo and the phonon mode of 1T-MoS,, indicate the
presence of 1T-MoS; in all samples [1, 28, 29]. The A,y to J; intensity ratio in a spatially
resolved Raman spectra of MoS, can be utilized to determine the phase content, as it is inversely
proportional to the amount of 1T phase present. In S1-EG, S2-EG+G, and S3-G, the J; peak is
visible, but the A;4/J; value is extremely low and cannot be seen in Figure 2B when zoomed in,
indicating a high 1T phase content. The increase in the A;4/J; value indicates a decrease in
the 1T phase content and the formation of a mixed phase of 1T/2H [30]. This explains the
absence of A4 peaks in the Raman spectra of samples S1-EG, S2-EG+G, and S3-G, as shown in
Figure 2B. Additionally, the low crystallinity and lack of 2H phase in the MoS, material may
account for the significant reduction in the intensity of typical E',, and Ay, peaks over 1T/2H-
MoS; in S1-EG, S2-EG+G, and S3-G [1, 13].
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Figure 2. (A) Raman spectra of S1-EG, S2-EG+G, S3-G; (B) Maginified Raman signals of green area from
Figure 2A; and (C) Symmetric displacement of Mo and S atoms in E,q, Elzg and Ay vibrational modes.
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Table 1. Summary of vibration modes (position peaks) in S1, S2, and S3 (cm™).

Sample 3 Phonon |, Exg % E | Ag
SLEG 1416 | ~-190 | -230 | -278 | <331 | -3712 | -
S2-EG+G 1415 | ~100 | <230 | -278 | 331 | ~312 | -
3G 1419 | ~190 | <230 | ~278 | 331 | ~372

Table 2. 1T and 2H phase proportions in MoS, nanomaterials synthesized in different polyol solvents.

PHASE PHASE FRACTION
S1-EG S2-EG+G S3-G
2H 15.5 % 19.8 % 20.8 %
1T 84.5 % 80.2 % 71.2%
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Figure 3. Mo 3d and S 2s XPS spectra of 1T/2H-MoS; in S1-EG, S2-EG+G, and S3-G.
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XPS spectra (Figure 3) confirm the formation of MoS, with signals for both 1T and 2H
phases, and trace MoO;. The Mo 3d region shows characteristic doublets for Mo**:
~228.4/231.7 eV for 1T-MoS, and ~229.8/233.2 eV for 2H-MoS, [1, 3, 7, 8, 31 - 36]. These
binding energies shift relative to elemental Mo (228/231.1 eV), reflecting phase-dependent
electronic environments The ~3.2 eV splitting and 3:2 intensity ratio between 3ds/, and 3ds/,
align with expected Mo oxidation states [37]. In 1T-MoS,, the lower binding energies (~1.3 eV
downshift from 2H) indicate higher electron density, consistent with earlier studies [29, 34, 38,
39]. S 2p spectra show peaks at ~161.5 and 162.8 eV for S?7, also shifted in 1T-MoS, due to
electron-rich Mo-S bonds [40, 41]. A minor peak near 225.9 eV (S 2s) supports Mo-S bonding,
while a peak around 235 eV suggests Mo®* in MoOs, likely from surface oxidation [38].

The relative concentration of the 1T and 2H phases in various solvents was calculated using
XPS as the ratio between the Mo 3d peak areas. Each phase's fraction was calculated following
the equation (1) below and then summarized in Table 2 [42]. All the MoS, products comprise
both phases - 1T and 2H - but their compositions vary depending on the solvents (reaction
temperatures). Notably, 1T phase proportion was reduced when increasing the reaction
temperatures (Teg < Tc+e) < To) [43]. The low temperature of MoS; synthesized in ethylene
glycol (EG) enabled such a rich composition of the 1T-phase, as 84.5 % as calculated in Table 2
with added mechanical and thermal stability due to co-existence with the 2H-phase. Because of
the presence of a highly conductive 1T phase rather than a 2H phase, these hybrid materials have
the potential to improve the electrochemical properties of batteries or capacitors.

2H (3ds/2y + 2H (3d3)2)
2H(3ds);)+2H(3d3/2)+1T(3ds/2)+1T (3d3,2)

Fraction of 2H phase = x 100% (1) [42]

High-resolution TEM (HRTEM) was performed to visualize the 1T/2H crystal surface
structures with lattice fringes (Figure 4). The enlarged red rectangle in Figure 4A, depicted in
Figures 4B and 4C, reveals the trigonal lattice area of the 1T phase and the honeycomb lattice
area of the trigonal prismatic coordination in the 2H phase. As depicted in Figure 4D, the
interlayer distances were measured to be 0.236 nm, which is given to the d spacing of the (100)
planes of the 1T phase MoS; [44].

Figure 5 illustrates the formation of diverse morphologies in the MoS, materials. When
comparing the nanoparticle morphology of the S1-EG and S3-G samples, the TEM images of the
S2-EG+G sample reveal the presence of numerous nanoflake wrinkles. These wrinkles are
agglomerates or aggregates composed of homogeneous MoS, particles or flakes. The particle
boundaries are more distinct in S3-G compared to S1-EG and S2-EG+G. In S1-EG and S2-
EG+G, the flakes exhibit corrugation, indicating the flexible and ultrathin nature of the material.

The integration of TEM images with XRD, Raman, and XPS data offers compelling
evidence that MoS, materials have been successfully synthesized at the nanoscale, exhibiting
diverse morphologies. Remarkably, the TEM images reveal variations in the size and shape of
metal sulfide nanoparticles, even when employing the same microwave synthesis route. These
findings suggest that microwave irradiation can selectively influence the nucleation and growth
rates of distinct compounds.
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Figure 4. (A) HRTEM images of S1-EG; (B) Image of the region enclosed by the redrectangle of (A) and
schematic structure of the unit cells of the 1T phase; (C) Image of the region enclosed by the red rectangle
in (A) and schematic structure of the unit cells of the 2H phase; (D) Measurement of interlayer distances
by Image J to calculate the d spacing between the (100) planes of 1T phase MoS..
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Figure 5. TEM images of 1T/2H-MoS; in S1-EG, S2-EG+G and S3-G.

Explaining the mechanism for synthesis reaction and proposing the structure of as-
prepared material

The probable mechanism of the reaction of microwave heating synthesis of 1T/2H-MoS,
nanoparticles is presented by the following steps:

(1) Dissociation: Two types of water are present in the precursor: structural water, which is
bound chemically and is an integral part of (NH,)s(M0;04)-4H,0, and water present in ethylene
glycol. Microwave-induced dissociation reactions of AHM and TU species in polyol solvents are
likely to occur according to the following equations:

(NH4)s(M07024) -4H;0+ H,0 [M0;0,]%+ 6 NH,* (2
[M0,0,4]"> 6[M00,]* + Mo® (3)
H,NCSNH,~> NH," + NCS &)
H,NCSNH, + H,0 > 2NHg + CO, + H,S (5)

(2) Nucleation: Initially, MoS, nanocrystal seeds are formed due to the reaction between
AHM and thiourea. The nucleation process initiates the formation of a new crystalline entity
from a solution. During the synthesis process, nanocrystal seeds grow into larger crystals and
gather together to form clusters, while new crystals are continuously formed. The reactions
proceed as follows:

MoO,* + H,S + 2H,0 — MoO, + SO,” + 6H" (6)
MoO, + 2H,S — MoS, + 2H,0 (7)

(3) Crystal growth: Initially, MoS, nanocrystal seeds are generated due to the reaction
between AHM with thiourea. The nanocrystal seeds grow into larger crystals and cluster
together throughout the synthesis process while new crystals continue to form. Mo atoms and S
atoms form a chemical bond along the plane direction in a monolayer MoS,, much stronger than
the Van der Waals force between two monolayers MoS,. As a result of the ability of MoS, to
form stable Mo-S bonds in the plane direction, massive MoS, flakes can be observed in clusters
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in various solutions such as EG, glycerol, and EG/G. Ammonium ions can penetrate the gap
between the MoS, monolayers, resulting in a relatively small flake size and many bulk structures
with a considerable layer distance. These bulk formations are thought to be generated by the
aggregation of small MoS; flakes.

An illustrated mechanism for the growth of MoS, crystals involves the presence of
[M0;0,,]° ionic groups in a neutral solution. These groups are composed of seven octahedral
[MoQg] ionic groups that contain Mo and O atoms with three different bond lengths. As
NH,CSNH, produces S* ions, they replace the terminal O atoms connected by the Mo—O ionic
bond because the bond energy of Mo-S is higher than that of the terminal Mo—O bond [45].

Solvents play significant roles in microwave-assisted liquid-phase synthesis. Ethylene
glycol (EG) and glycerol (G) have a high boiling point (>180 °C), are microwave-compatible,
have an appropriate viscosity, and promote nanoparticle nucleation and development in high
boiling polyols. The nucleation and growth of nanoparticles in high boiling polyols such as
ethylene glycol (EG) and glycerol are the primary reasons for their use in nano MoS; production.
The polyol acts as a solvent and a stabilizing agent, in this case, restricting particle growth while
limiting particle agglomeration and aggregation [46].

Explaining the phase transitions between 1T and 2H under microwaves irradiation

2H phase formed in the first stage and then transitioned to a 1T phase via an NH," ion-
induced phase transformation, similar to intercalated Li* [47]. The NH* ion destabilizes the
trigonal-prismatic 2H-MoS; structure, favoring the octahedrally coordinated 1T-MoS,. The
NH," ion destabilizes the trigonal-prismatic 2H-MoS, structure and favors the octahedrally
coordinated 1T-MoS..

The microwave irradiation has two effects on the synthesis of 1T/2H-MoS,. First, the
microwave dipole rotation destroys the weak van der Waals forces between the MoS, layers and
increases their interlayer spacing (shift (002) peaks to lower angel in XRD patterns). Second,
ammonium ions enter the MoS; interlayers in a non-uniform manner, making the lattice unstable
for phase transition from 2H to 1T. As previously stated, there are three groups (d, d ;) (dxy,
dy2y2), and (d,2) of electrons in the 4d orbital of Mo in the 2H phase, of which the (d,z) orbital
is filled with electrons, leaving other orbitals empty and contributing to the phase structure's
stability (Figure 6). After being exposed to microwave radiation, the ammonium ions in the
matrix cause an electron to partially occupy the (dy,, d,2,2) orbital, reducing its stability and
facilitating phase conversion from the 2H to the 1T phase. The electrons of Mo are occupied in
two of the three degenerate orbitals in the two groups (dyz,z, d,z) and (dyy, dy, dy;) of the 1T
phase (dyy, dy;, dy;). As a result of the three degenerate orbitals being filled, the addition of an
electron increases phase stability. Because of lattice instability, the interaction between MoS,
and ammonium ions weakens the top Mo-S bond, causing phase conversion from the 2H to 1T
phase [29].

dy, d,,
2HMoS, o9 @y ®, =
(A) ‘ i ‘ ‘ . ad? ll_‘z sdides
Mo @ ® g y 4
S e 2 2 o :
4 | 4 * e v dp2
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ad?
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(B)

Figure 6. (A) 2H-MoS, crystal structure and ligand splitting for 4d orbitals of Mo atoms with trigonal-
prismatic coordination, (B) 1T-MoS, crystal structure and ligand splitting for 4d orbitals of Mo atoms
with octahedral coordination.
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Figure 7. An illustration of the phase distribution in a 1T/2H-MoS, material where 1T is the
dominant phase.

The hybrid materials in S1-EG, S2-EG+G, S3-G demonstrate that the 1T phase has a more
dominating composition than the 2H phase, based on the results of computing the 1T and 2H
phase compositions using XPS spectra. As a result, we refer to the phase that occupies the upper
component as the matrix phase and the remaining phase as the randomly dispersed phase inside
the matrix phase. Figure 7 illustrates the phase distribution of the 1T and 2H phases in the
synthesized MoS; hybrid material.

4. CONCLUSIONS

In conclusion, the successful synthesis of 1T/2H-MoS, nanomaterials using a green
method based on microwave heating and green solvent polyols has been demonstrated. This new
approach offers several advantages over conventional synthesis methods, including shorter
reaction times, lower energy consumption, and the use of environmentally friendly solvents. The
use of polyol solvents including ethylene glycol (EG), ethylene glycol mixed with glycerol (G)
in a volume ratio of 1:1, and glycerol (G) has been shown to be effective in controlling the phase
fraction of 1T/2H MoS,, with the highest 1T concentration reaching 84.5 %. This is a significant
achievement, as the 1T phase has been shown to exhibit superior electrochemical performance
due to its enhanced electrical conductivity. Thereaction mechanism and phase
transition between the 1T and 2H phases have been described and illustrated, shedding light on
the complex behavior of this hybrid material. The role of polyol solvents in the practical
synthesis of nano MoS, under microwave heating has also been evaluated and explained.
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