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Abstract. Vibration analysis of continuous microbeams carrying a moving load is presented in 

the framework of the Euler-Bernoulli beam theory and the modified couple stress theory 

(MCST) for the first time. The continuous beams consist of three spans with nonuniform cross-

section and simply supported ends. A finite element formulation is derived and used to establish 

the discretized equation of motion for the microbeams. Natural frequencies and dynamic 

response are determined with the aid of an implicit Newmark method. The derived formulation 

is validated by comparing the obtained results with data available in the literature. The numerical 

investigation reveals the importance of the microstructural size effect on the vibration of the 

continuous microbeams, and incorporating the material length scale parameter in the formulation 

leads to an increase in the vibration frequencies, but a decrease of the dynamic response. The 

effects of the material length scale parameter and moving load velocity on the vibration behavior 

of the continuous microbeams are studied in detail and highlighted. 
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1. INTRODUCTION  

With wide application in practice, vibration of beam structures subjected to moving load 

has received much attention from researchers. Many reports on the dynamic response of one-

span beam under a moving load can be found in the literature, e.g. Refs. [1 - 3]. Several 

investigations on vibration of continuous beams have been carried out, only the notable ones are 

shortly discussed herein. Henchi et al. [4] employed the dynamic stiffness method to predict 

dynamic response of three-span beam under a moving load. The analytical method and transfer-

matrix method were used by Wang [5] to assess vibration characteristics of continuous 

Timoshenko beam with moving force. Zheng et al. [6] proposed the modified beam vibration 

functions containing cubic spline expressions as the assumed modes in their study on dynamic 

behavior of multi-span Timoshenko beams carrying a moving load.  
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Microbeams have been using extensively in microscopic devices such as microsensors, 

micro-electro mechanical systems (MEMs). Understanding the behavior of microbeams is 

crucial for design engineers. The traditional beam theories, however cannot predict the 

microstructural size effects due to the lack of material length scale parameter. Several higher-

order continuum theories have been proposed, among which the modified couple stress theory 

(MCST) of Yang et al. [7] is widely adopted in modeling the microstructural size effect in 

microbeams.  The dynamic analysis of Euler-Bernoulli beams under a moving microparticle was 

presented by Şimşek [8] in the framework of the MCST and the finite Fourier sine 

transformation, showing the importance of the material length scale parameter and the velocity 

of the microparticle on the dynamic behavior of the microbeam. The influence of microstructural 

effect on vibration of microbeams excited by a moving load/mass was investigated via the 

MCST by Jafari-Talookolaei et al. [9] using a semi analytical method, and by Esen et al. [10], 

Esen [11] using the finite element method.  

The vibration analysis of microbeams discussed above are limited to single-span beams 

only. The use of intermediate supports is a common way in practice to reduce the dynamic 

magnification factor of beams. According to the authors’ best knowledge, there is no study on 

vibration of continuous microbeams with two or more spans carrying a moving load so far. As 

an effort to narrow this gap, vibration analysis of a continuous microbeam under a moving load 

is presented in this work. A simply supported non-uniform three-span under a constant velocity 

moving load is considered herein. Due to the complexity of finding a closed-form solution 

satisfying boundary conditions at the multiple supports, analytical methods are hardly used in 

analyzing continuous beams, in general, vibration of continuous microbeams, in particular. The 

finite element method is adopted herein to study vibration of the three-span microbeam under a 

moving load. Energy expressions for the microbeam are derived in the framework of Euler-

Bernoulli beam theory and the MCST.  The equation of motion in discretized form for the 

microbeam is established by using a simple finite element formulation, and then solved by the 

Newmark direct integration method. The effects of the material length scale parameter and the 

velocity of the moving load on the vibration characteristics of continuous microbeam are 

examined and discussed in detail. 

2. THEORY AND FORMULATION 

Figure 1 shows a simply supported continuous microbeam with non uniform cross-section 

under a load P, moving with a constant velocity v from the left end to the right end of the beam. 

The beam consists of three spans with length of L, rectangular cross-section (2b×h) for the 

middle span and (b×h)
 
for the two remaining spans. The x-axis of the Cartesian coordinate 

system in the figure is chosen on the microbeam mid-plane, and the z-axis directs upward. The 

investigation is carried out with an assumption that the moving load P is always in contact with 

the beam during its motion on the microbeam. In the figure, xp is the current abscissa of the load 

P with respect to the left end of the continuous microbeam; A, B and C are midpoints of the first, 

second and third spans, respectively.  

According to Euler-Bernoulli beam theory, the displacements ux(x,z,t) and uz(x,z,t) in the x 

and z directions, respectively, are given by 

,( , , ) ( , ) ( , )

( , , ) ( , )

x x

z

u x z t u x t zw x t

u x z t w x t      (1)
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where u(x,t) and w(x,t) are the axial and transverse displacements of any point on the microbeam 

x-axis, respectively; t denotes the time variable. The subscript comma in Eq. (1), and hereafter, 

is used to denote the derivative with respect to the variable that follows. 

 

Figure 1. Three-span microbeam with non uniform cross-section under a moving load. 

The microstructural size effect is modelled herein by using the modified couple stress 

theory of Yang et al. [10]. Accordingly, the strain energy U of the continuous microbeam is 

given by 

1
( ) , , , ,z

2
ij ij ij ij

V

U m dV i j x y  (2) 

where V is the volume of the microbeam; ij and ij are, respectively, the components of the 

classical stress and strain tensors; ijm and ij refer to the components of the deviatoric part of the 

couple stress tensor and the curvature tensor, respectively. These components are defined as 

follows  

, ,

2
, ,

1
2 , ( )

2

1
2 , ( )

2

ij kk ij ij ij i j j i

ij ij ij i j j i

G u u

m l G

 (3) 

where ui (I = x, y, z) is the displacement in the i direction; l is the material length scale parameter 

measuring the effect of couple stress; δij is the Kronecker delta; and G are Lame’s constants 

which are related to the elastic modulus E and Poisson’s ratio ν as 

,
(1 )(1 2 ) 2(1 )

E E
G  (4) 

with i is component of the rotation vector and it’s given by 

,

1

2
i ijk k je u  (5) 

where ijke represents the permutation symbol. 

Using Eq. (1) and Eqs. (3) - (5), the strain energy of three-span continuous microbeam in 

Eq. (2) can be rewritten in the form 

3
2 2

1 ( 1)

23
2 2 2 2
, , ,

1 ( 1)

1
( 4 )
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1
( 2 )

2 12

kL
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k k L

kL

k x xx xx
k k L

U l G dA

h
b h G u w l Gw dx

 (6) 
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where bk is the width of the ith span. 

The kinetic energy T of the continuous microbeam is of the form 

2 21
( )

2
x z

V

T u u dV  (7) 

where V is the volume of the microbeams; is the mass density; the over dot indicates the 

partial derivative with respect to the time variable. From Eq. (1), the kinetic energy T can be 

rewritten in the form 

23
2 2 2

,
1( 1)

1
( )

2 12

kL

k x
k k L

h
T b h u w w dx  (8) 

Finally, the potential energy V of the moving load P is given by 

3 3

0 0

( ) ( )
L L

z P PV Pu x vt dx Pw x vt dx  (9) 

where δ(.) is the Dirac delta function. 

By applying Hamilton’s principle to Eqs. (6), (8) and (9) one can obtain the differential 

equations of motion for the continuous microbeam. However, finding a closed-form solution for 

such equations is cumbersome. In the next section, a finite element formulation is derived and 

used to establish the discretized equation of motion and to obtain the vibration characteristics of 

the continuous microbeam. 

3. SOLUTION METHOD 

Considering a two-node microbeam element with length le. The vector of nodal 

displacements d for the element contains six degrees of freedom as 

1 1 , 1 2 2 , 2{ }T
x xu w w u w wd  (10) 

where ui, wi and w,xi (i = 1, 2) are the values of u, w and w,x at the node i. The superscript ‘T’ in 

Eq. (10) and hereafter is used to denote the transpose of a vector or a matrix. 

The displacement field Tu wu = { } in the each element is interpolated from the nodal 

values according to 

u = Nd  (11) 

where N are a shape function matrix of the following form 

1 2

1 2 3 4

0 0 0 0

0 0

u u u

w w w w w

N N

N N N N

N
N =

N
 (12) 

In the Eq. (12), Nui (i=1,2) are linear interpolation functions, Nwi (I = 1,…,4) are cubic Hermite 

polynomials. 

       Using the above interpolations, the strain energy of the beam in Eq. (6) can be written as 

31

2

nel
T

eU d k d  (13) 
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where nel is the total number of elements used for each span, and ke is the element stiffness 

matrix, and it is defined as follows 

, 1 , , 1 ,

0

, 2 , , 2 ,

0

, 3 , , 3 ,

0

( ) for the first span

( ) for the second span

( ) for the third span

e

e

e

l

T T
u x u x w xx w xx

l

T T
e u x u x w xx w xx

l

T T
u x u x w xx w xx

A B dx

A B dx

A B dx

N N N N

k N N N N

N N N N

 (14) 

where 
3

2( 2 ), ( 2 ) , 1,2,3
12

i
i i i i

b h
A b h G B G b hl G i  (15) 

Similarly, the kinetic energy of the beam in Eq (8) can be written in the following form  
31

2

nel
T

eT d m d  (16) 

where the element mass matrix me of the beam is defined as 
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( ) for the third span

e

e

e

l

T T T
u u w w w x w x

l

T T T
e u u w w w x w x

l

T T T
u u w w w x w x

C C D dx

C C D dx

C C D dx

N N N N N N

m N N N N N N
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 (17) 

with 
3

, , 1,2,3
12

i
i i i

b h
C b h D i  (18) 

The potential energy in Eq. (9) is of the form 
3nel

T
PV d f  (19) 

where fP is the time-dependent element nodal load vector generated by the moving load P, and it 

has the form 

e

T
P w

x
Pf N  (20) 

where xe is the current abscissa of the moving load P with respect to the left node of the element. 

The discretized equation of motion for the continuous microbeam under a moving load in 

case of neglecting the damping effect can be written in the following form 

+ =MD KD F  (21) 

where D and D  are, respectively, the global vectors of nodal displacements and accelerations; 

M and K are, respectively, the structural mass and stiffness matrices, constructed by merging the 

derived element mass and stiffness matrices over the total number of elements. F is the global 
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vector constructed by assembling fP over the elements. Equation (21) can be solved by a direct 

integration Newmark method. The average acceleration method that ensures the unconditional 

convergence of the numerical solution is adopted herein. 

4. NUMERICAL INVESTIGATION 

In this section, the vibration of the simply supported three-span continuous microbeam 

subjected to a moving load is investigated numerically.  A microbeam made from steel 

(SUS304) with E = 210 GPa, ρ = 7800 kg/m
3
, ν = 0.3 [12] is considered. The parameters of the 

microbeam used for calculation are as follows: h = 10 µm, b2 = 2b1 = 2b3 = 2 µm, and an aspect 

ratio L/h = 20. 

For convenience, the non-dimension parameters µi, fv, η, Dd(A), Dd(B) and Dd(C) are 

introduced, respectively, for the natural frequencies, moving load velocity, material length scale 

parameter and dynamic magnification factor at the positions A, B, C as [12] 

1

(1 )(1 2 )
, , ,

(1 )

( / 2, ) (3 / 2, ) (5 / 2, )
D (A) max , D ( ) max , D ( ) max

i i B v

B

d d d

st st st

v l
L f

E L h

w L t w L t w L t
B C

w w w

 (22) 

where ωi is the ith natural frequency; LB=3L is the total length of the continuous microbeam;   
3

248st Bw PL EI is the static deflection of the single-span steel beam with the moment of 

inertia 3
2 2 12I b h under a load P at the mid-span. 

Table 1. Convergence study and validation for fundamental frequency parameters of a single-span 

microbeam (η = 0.5, L/h =10). 

Material Nel = 2 Nel = 4 Nel = 6 Nel = 8 Nel = 10 Ref. [13] 

Al 0.3882 0.3868 0.3867 0.3867 0.3867 0.3863 

SiC 0.8691 0.8660 0.8658 0.8657 0.8657 0.8538 

 

Figure 2. Comparison of dynamic vertical deflection at the midpoint of each span of continuous 

marcrobeam (η = 0) with the positions of moving load. 
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      The accuracy and convergence of the proposed beam element are firstly confirmed. To this 

purpose, in Table 1, the convergence and validation in evaluating the fundamental frequency 

parameters are presented for single-span microbeam. The results in Table 1 are given for 

microbeam made from aluminium (Al) and black silicon carbide (SiC).  

It is observed that the convergence of beam element is achieved by using only ten elements. 

For the validation purpose, the frequency parameters obtained in present work agree very well 

with that of Ansari et al. [13] where the Navier solution form is used. 

In Figure 2, the relations between the dynamic deflections of a continuous marcrobeam (η = 

0) with the position of the moving load obtained in this paper are compared with that of Henchi 

el al. [4]. In the figure, points A, B and C are the midpoints of the first, second and third spans, 

respectively. As can be noted from Figure 2 that a good agreement between the results of the 

present work with the results using dynamic finite element model of Henchi el al. [4] is 

obtained. 

The convergence of the derived beam element in evaluating the dynamic magnification 

factor at positions A, B and C of the three-span continuous microbeam is shown in Table 2 for 

L/h = 20, η = 0.2, fv = 0.05. As observed from this table, the convergence of the derived element 

is also achieved using ten elements for each span. Because of this convergence result, ten 

elements/span are used for all the computations reported below. 

Table 2. Convergence of the microbeam element in evaluating dynamic magnification factors at the 

midpoint of each span for L/h = 20, η = 0.2, fv = 0.05. 

 Nel = 2 Nel = 4 Nel = 6 Nel = 8 Nel = 10 

Dd(A) 0.0306     0.0305     0.0304     0.0304     0.0304     

Dd(B) 0.0177     0.0178     0.0178     0.0178     0.0178     

Dd(C) 0.0311 0.0305 0.0304 0.0305 0.0305 

 

 

 

 

 

 

 

 

 

 

Figure 3. Variation of the first three frequency parameters of continuous microbeam with parameter η. 
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The influence of the dimensionless material length scale parameter η on the natural 

frequencies of the three-span continuous microbeam is shown in Figure 3, where the variation of 

the first three frequency parameters with the dimensionless scale parameter η are depicted.  One 

can see from the figure that the frequency parameters obtained from traditional beam theory (η = 

0) are always lower than that calculated from the MCST. This can be explained by observing Eq. 

(6), where the presence of the parameter η in the MCST leads to an increase of the microbeam 

stiffness. Besides, an increase in the parameter η results in an increase in the frequency 

parameter, and this is correct for all the three frequency parameters considered herein.  

The dynamic magnification factors at positions A, B and C of the three-span microbeam are 

presented in Table 3 for a velocity parameter fv = 0.1 and different values of the dimensionless 

material length scale parameter (η = 0, 0.1, 0.25, 0.5, 0.75, 1). It is clear from Table 3 that the 

effect of the parameter η on the dynamic magnification factor is significant, and increasing the 

parameter η leads to a sharp decrease in the dynamic magnification factor, regardless of 

considered point (A, B or C). On the other hand, the factor Dd at the points A, B, C obtained by 

using the MCST is always lower than that using the conventional beam theory. Observing from 

Table 3 as well as Figure 4 one can see that when a moving load moves on the beam, the values 

of the factors Dd(A) and Dd(C) are close to each other while the factor Dd(B) is always the 

lowest, regardless of the parameter η. This result can be explained by the fact that the width of 

the cross-section of the second span considered in this paper is twice wider than that of the first 

and the third spans. As a result, the bending stiffness of the second span is also twice larger than 

that of the first span and the third span.    

Table 3. Dynamic magnification factor of continuous microbeam under a moving load (fv = 0.1). 

η Dd(A) Dd(B) Dd(C) 

0 0.0403 0.0221 0.0361 

0.1 0.0389 0.0214 0.0349 

0.25 0.0332 0.0182 0.0298 

 0.5 0.0217 0.0119 0.0195 

0.75 0.0137 0.0076 0.0123 

 1 0.0091 0.0050 0.0081 

      
Figure 4. Variation of dynamic magnification factor at A, B and C with the parameter η (fv = 0.05). 



 
 

Vu Thi An Ninh, et al. 
 

 

396 

The time histories for deflection at the points A, B and C of the continuous microbeam are 

respectively presented in Figures 5 - 7 for various values of the length scale parameter η and the 

velocity parameter fv. In the figures, ΔT is the total time necessary for the load P crossing the 

microbeam. Several remarks can be drawn from observation of these figures.  

 

    

 

 

 

 

 

 

 

 

 

 

Figure 5. Time histories for deflection at point A with different values of the parameter η. 

 

    

 

 

 

 

 

 

 

 

 

Figure 6. Time histories for deflection at point B with different values of the parameter η. 
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   Figure 7. Time histories for deflection at point C with different values of the parameter η. 

 

Figure 8. Time histories for deflection at the points A, B and C with different values of moving load                          

(η = 0.5, fv = 0.1). 
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   Figure 9. Variation of dynamic magnification factor at points A, B and C with the velocity parameter 

for the different values of parameter η. 

Firstly, the influence of the size effect is confirmed again from the figures, where the 

deflection amplitude is decreased by increasing the scale parameter η, regardless of the load 

velocity and the considered point. Secondary, the moving load velocity plays an important role 

on the vibration of the microbeam, and both the deflection and the way the microbeam vibrates 

are significantly affected by the load velocity.   

The maximum deflection at the mid points tends to increase for a higher velocity, 

regardless of the scale parameter η. The microbeam executes less vibration modes when the load 

velocity is high, and this phenomenon is correct for all three points, regardless of the scale 

parameter. In addition, the scale parameter just alters the vibration amplitute, and it hardly 

changes the way the microbeam vibrates. Figure 8 presents the time histories at the points A, B 

and C for η = 0.5, fv = 0.1 and different movings. The change of the moving load amplitude, as 

seen from the figures, alters the time histories at the considered points significantly, and as 

expected, the dynamic deflection of the microbeam is higher when it is subjected to a larger 

moving load. 

 

Figure 10 . Variation of dynamic magnification factor at points A, B and C with the velocity 

parameter for the different values of moving load  (η = 0.5). 
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The effects of the scale parameter and the moving load amplitude on the dynamics of the 

continuous microbeam are shown in Figures 9 and 10, where the variation of the dynamic 

magnification factor at the midpoint of each span with the velocity parameter fv are depicted for 

different values of the parameter η and the load P, respectively. As seen from the figures, the 

dynamic magnification factors repeatedly increase and decrease when prarameter fv increases, 

then they reach the maximum values. Furthermore, the maximum dynamic magnification factor 

at point A attains at the earliest time, while it is the latest for the point C. Besides, the maximum 

dynamic magnification factor obtained at point C is always higher than that obtained at points A 

and B, regardless of the value of the scale parameter η and moving load amplitude. The relation 

between the dynamic magnification factor at the midpoint of each span and the velocity 

parameter is highly dependent on the parameter η and the moving load amplitude. The dynamic 

factor is decreased by the increase of the scale parameter η, as can be observed from Fig. 9, and 

as expected, it is increased by the increase of the moving load, as can be seen in Fig. 10. 

The maximum axial stresses at the mid-span sections are presented in Table 4 for fv = 0.05 

and different material length scale parameters and the load positions. The ãial stress σxx in the 

table is normalized by σ0 = P/(b1h), and at the time when the moving load arrives at the points A, 

B and C. As expected, the maximum stress decreases when parameter η increases, regardless of 

the load position and considered section. It is observed from the table that when the moving load 

arives at any midpoint, the maximum stress obtained at that section is the largest, regardless of 

the dimensionless material length scale parameter η.  

Table 4. Maximum axial stresses at mid-span sections for different material length scale parameters and        

load positions (fv = 0.05). 

Load position Section 
η      

0 0.1 0.25 0.5 0.75 1 

P at A 

A 22.5638 21.8158 18.5820 12.1497 7.7047 5.0951 

B 3.9380 3.8074 3.2430 2.1204 1.3447 0.8892 

C 3.3298 3.2194 2.7422 1.7930 1.1370 0.7519 

P at B 

A 2.2444 2.1700 1.8483 1.2086 0.7664 0.5068 

B 12.2836 11.8765 10.1159 6.6143 4.1944 2.7737 

C 3.7610 3.6364 3.0973 2.0252 1.2843 0.8493 

P at C 

A 0.2677 0.2590 0.2205 0.1443 0.0915 0.0605 

B 2.1644 2.0927 1.7825 1.1654 0.7391 0.4887 

C 22.5697 21.8215 18.5868 12.1529 7.7067 5.0964 

5. CONCLUSIONS 

Vibration analysis of a continuous microbeam carrying a moving load has been presented. 

The three-span microbeam with nonuniform cross-section is considered. A size-dependent finite 

element formulation was derived on the basis of Euler-Bernoulli and the MSCT, and used to 

establish the discretized motion equation for the continuous microbeam. Vibration 

characteristics were computed using the Newmark method.  The effects of the scale parameter 

and the velocity parameter of the moving load on the vibration of the microbeam have been 
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studied in detail. The most important points from the results obtained in the present work can be 

summarized as follows. 

 The results obtained from the derived formulation of this present work agree well with the 

results previously published in the literature. 

 The size scale parameter plays an important role on the vibration of the microbeam. The 

frequency parameters obtained from traditional beam theory are always lower than that 

calculated from the MSCT. An increase in the material length scale parameter η leads to an 

increase in the frequency parameters and a decrease in the dynamic magnification factor. 

 The deflection at the midpoint of each span is significantly affected by the velocity 

parameter, the maximum deflection as well as the way the microbeam vibrates. 
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