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Abstract. In this paper, Proportional Topology Optimization (PTO) is employed to solve multi-

material topology optimization problems, considering the minimum compliance problems 

satisfied by the mass and cost constraints. A hybrid interpolation using threshold functions is 

applied to the elastic modulus, while the cost is represented as a linear function. Functions with 

scaling and translation coefficients are introduced to interpolate the elastic modulus and cost 

properties for multiple materials with respect to normalized density variables. The numerical 

examples are conducted from multiple perspectives to illustrate the proposed method. Studies on 

filter radius, projection parameter, hybrid coefficient, and initial design variables reveal their 

influence on the optimal solution of the problem, accompanied by a real-world example 

involving steel and aluminum materials to demonstrate the impact of cost constraints. 

Keywords: Topology optimization, proportional topology optimization, minimum compliance problem, 

multi-material design. 

Classification numbers: 5.4.3, 5.6.2. 

1. INTRODUCTION 

Topology optimization in solid mechanics is a powerful engineering methodology that has 

revolutionized the design and analysis of structures and components. It is a computational 

technique aimed at optimizing the distribution of material within a given design domain to 

achieve the best possible performance, often with constraints on factors like mass, stiffness, or 

cost. In recent years, there has been a notable increase in the number of studies focusing on the 

optimization of multi-material structures. The Solid Isotropic Material with Penalization (SIMP) 

approach has gained popularity due to its practicality and conceptual clarity. Pioneering works in 

this domain include those by Sigmund [1] and Bendsøe et al. [2]. Zuo and Saitou [3] introduced 

an innovative approach known as ordered multi-material SIMP interpolation. In this approach, 

material properties of different candidate materials are expressed as functions of ordered 

normalized mass densities. López et al. [4] presented a comprehensive set of methodologies 

aimed at addressing various aspects of multi-material topology optimization. Silvera et al. [5] 
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introduced a fresh material model for ordered SIMP, with the aim of improving the method Zou 

proposed. 

Complementing these gradient-based methods, there are gradient-free approaches, such as 

PTO introduced by Biyikli and To [6], which allocate material proportionally based on strain 

energy without requiring sensitivity calculations. In addition, various non-derivative methods 

have been developed and applied in numerous topology optimization problems. Cui et al. [7] 

extended the PTO to address multi-material problems with a modified interpolation scheme. 

Nguyen et al. [8] presents an extension for the PTO algorithm to solve multi-material topology 

optimization of compliant mechanism problems.  

The aim of this research is to create a new computational scheme for optimizing multi-

material structures, using PTO and a novel interpolation function for elastic modulus. The 

threshold function is chosen due to its practical compatibility with real-world manufacturing 

processes. Even though design variable values diverge significantly from material density 

values, threshold function effectively narrows the elastic modulus values towards the true 

material's ones. This helps the model become more realistic. The remainder of this paper is 

organized as follows. In Section 2, novel ideas on the interpolation of the elastic modulus using 

threshold functions, the distribution of the cost function, and the density projection technique are 

presented. All of these concepts are integrated into the PTO method to offer a solution approach 

for multi-material problems. In Section 3, several numerical examples are shown to demonstrate 

the effectiveness and feasibility of the proposed method in designing common multi-material 

models. Conclusions and comments are drawn in the last section. 

2. MAIN IDEAS FOR THE STUDY 

In this section, the minimum compliance problem for multi-materials with constraints on 

both mass and cost is introduced. Next, we discuss interpolation techniques for the elastic 

modulus and cost variables in the context of multi-material problems. Additionally, in order to 

concentrate density values toward the candidate material density, it is essential to explore the 

implementation of density projections. Finally, we present the PTO algorithm for multi-material 

problems. 

2.1. Topology optimization problem formulation  

Considering the presence of multiple materials characterized by three properties: density, 

elastic modulus and cost; we formulate the topology optimization problem based on density. The 

primary objective is to minimize compliance while adhering to constraints associated with 

structural mass and cost. Cost constraint plays a vital role in real-world production, influencing 

material choices and structural designs to ensure that optimized solutions meet both performance 

objectives and economic feasibility. This problem can be expressed as follows: 
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where c is structure compliance, K is the global stiffness matrix, U and F are the global 

displacement vector and force vector, respectively; k0 is the element stiffness matrix for an 

element with unit modulus of elasticity, ue is the element displacement vector, Ee is material 

elastic modulus of the e-th element, xe is the element density and x is the vector of design 

variables which contains xe, N is the number of element used to discretize the design domain, M 

and C are the mass and the cost of the current design, respectively, M0 and C0 are the mass and 

the cost of the design domain fully filled with the heaviest material, respectively, fM and fC are 

the allowed mass and cost fraction, respectively; Ve and Ce are the volume and cost of the e-th 

element. 

2.2. Interpolation for elastic modulus and cost function 

The function ( )e eE x  in equation (1) is approximated by a threshold function proposed by 

Wang et al. [9], which takes the following form: 
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and 
iE and 

1iE   
are the elastic modulus of ordered candidate material i and 1i  , respectively. 

The threshold 
1/2i 

is the middle point between two phases. It leads to  1/2 1 / 2i i i      

where 
i and 

1i 
are the density of ordered candidate material i and 1i  , respectively. 

A common interpolation for elastic modulus is a power function. For multi-material 

problems, Zou [3] proposed an extended power function as 
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where p is referred to the penalty parameter. 

To investigate the impact of the elastic modulus on the results, we introduce a hybrid 

function combining a power function and a threshold function as follows: 

( ) (1 ) ( ) ( )T Z

e e e e e eE x a E x aE x    (5) 

where a is the hybrid coefficient. When 0a  , ( )e eE x  adopts the threshold function. When 1,a 

( )e eE x takes on the form of a power function (see Figure 1-a). 

When employing the PTO method, there is no need for an overly complex cost function. 

We propose utilizing a linear function that aligns with practicality (see Figure 1-b). 
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where iC and 1iC  are the cost of ordered candidate material i and 1i  , respectively. 
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a) Elastic modulus interpolation b) Cost interpolation 

Figure 1. Elastic modulus and cost interpolation. 

2.3. Filtering and Projection for density 

In order to mitigate the emergence of checkerboard patterns in the density distribution, a 

widely adopted method is to employ a density filter. Silveira and Palma [5] proposed the density 

filter that modifies the design variable as follows: 
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where r is the filter radius, ( , )d e i  is distance from element e to element i and
eN is the set of 

elements i for which the distance ( , )d e i is shorter than .r  

While addressing multi-material optimization problems, numerous intermediate density 

elements emerge within the final structural configuration. These intermediate elements may exist 

between lighter solid materials and void regions or between different candidate solid materials. 

To tackle this challenge, the threshold projection technique is once again employed. As a result, 

the final density has the following form:  
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where 
eA and 

eB  are introduced in equation (3), b is a projection parameter whose value 

incrementally grows during the iterations of the optimization process. 

2.4. The optimal algorithm 

The multi-material optimization process is conducted as follows. Initially, we set an initial 

density value, denoted as x(0), for the design variable x , marking the starting point at 0k   

within the computational loop. This design variable x  is then utilized for elastic modulus 

interpolation and compliance value calculation. Subsequently, we redesign the density variable 

using the PTO method, prioritizing compliance as the primary comparison criterion. To make 

the results better, we apply a density projection that concentrates the density variable towards the 

density of candidate materials, thereby producing an updated design variable at (k + 1)-th 
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iteration. The deviation between the design variables x(k) and x(k+1), combined with compliance 

and cost constraints, is used to evaluate the convergence of the method. If the two design 

variables exhibit significant differences or fail to satisfy the imposed constraints, we once again 

utilize the recently obtained design variable for elastic modulus interpolation, compliance 

calculation, the PTO implementation, and density projection utilization to determine a new 

design variable. This iterative process continues until the values of the design variables 

converge, and all constraints are simultaneously satisfied. The flowchart outlining this 

methodology can be found in Figure 2. 

 
Figure 2. Flowchart of PTO for multi-material problem with mass and cost constraints. 

3. NUMERICAL EXAMPLES 

In this section, some numerical examples are presented. First, we examine the bridge model 

with normalized parameters. Then, we investigate a L bracket model related to real materials. 

 

 

  

a) Bridge design b) L bracket design 

Figure 3. Geometries and boundary conditions of structure models. 

3.1. Four-phase bridge design  
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The minimum compliance topology optimization of a bridge structure is used to verify the 

proposed approach. The structure, boundary conditions and external forces are shown in Figure 

3-a. All problems are treated as dimensionless. The external forces are 
1 1P   and 

2 2P  . The 

minimum elastic modulus is 9

min 10E  for the void phase, Poisson’s ratio is 0.3v  , the 

domain size 50L  . The properties of candidate materials are listed in Table 1. 

Table 1. Four-material properties. 

 Void Material A Material B Material C 

  0 0.4 0.7 1.0 

E Emin 0.2 0.6 1.0 

C 0 0.5 0.8 1.0 

Color White Green Blue Red 

Using the finite element method, the model employed a grid of 5000 quadrilateral 

elements, yielding 101 nodes horizontally and 51 nodes vertically. The problem was solved 

using an initial design variable x(0) = 0.5, subject to the constraints fM = 0.4 and fC= 0.3. Figure 4 

provides a visual comparison between our solution and ones achieved by Zou [3]. Zou employs 

a gradient-based optimization approach using an SIMP interpolation, with penalty coefficients 

set to 4p   and a filter radius of 6r  . In case of 4r  , our results closely align with Zou's 

findings concerning the distribution of void material ( 0  ). Conversely, in case of 6r  , our 

results closely resemble Zou's solution for the distribution of material C ( 1  ). Detailed 

comparisons between Zou's solution and ours, considering various filter radius values, are 

presented in Table 2. Notably, in all instances, our objective function yields lower values than 

Zou's results. 

   
a) Zou’s method with 6r   b) Our method with 4r   c) Our method with 6r   

Figure 4. Optimized topologies of bridge design in case of the comparison. 

Table 2. Comparison of the optimal solution with respect to filter radius. 

Method Iteration Compliance Mass Cost 

Zou’s method with 6r   123 232.7 0.4 0.277 

Our method with 3r   51 203.5 0.4 0.297 

Our method with 4r   51 209.9 0.4 0.280 

Our method with 5r   51 215.2 0.4 0.265 

Our method with 6r   51 217.2 0.4 0.257 

Our optimal solution with 6r   provides results that are more conducive to the design 

process. Hence, all subsequent studies were conducted with a filter radius of 6r  . 
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3.1.1 Discussion on the projection parameter 

Considering the problem with varying values of the projection parameter to understand its 

impact on the optimization results. The results are presented in Table 3. The notations M1, M2, 

M3 represent the measure of non-discreteness [10] for the intervals, which are defined by the 

densities of candidate materials. The smaller the measure of non-discreteness, the more the 

density values are concentrated around the values of the density candidate materials. We can see 

that as parameter b increases with the current iteration k in the PTO algorithm, the measure of 

non-discreteness becomes smaller (refer to Figures 5-b and 5-c). Conversely, when b is a 

constant, the density distribution is poor (see Figure 5-a). The following studies in this paper aim 

to achieve a low measure of non-discreteness. 

   
a) 0b   b) / 20b k  c) 2 / 40b k   

Figure 5. Histogram of optimal density in case of various projection parameters. 

Table 3. Comparison of the optimal solution with respect to projection parameter. 

Projection parameter Iteration Compliance Mass Cost M1 M2 M3 

0b   51 217.2 0.4 0.257 0.662 0.667 0.350 

2b   109 222.5 0.4 0.272 0.313 0.354 0.190 

4b   123 241.7 0.4 0.257 0.103 0.121 0.055 

/ 20b k  151 231.8 0.4 0.270 0.021 0.034 0.020 

/ 40b k  53 219.6 0.4 0.262 0.490 0.506 0.269 

2 / 40b k   99 232.1 0.4 0.265 0.098 0.095 0.043 

3.1.2 Influence of elastic modulus interpolation 

In this study, the projection parameter is chosen to be in the linear form of / 20b k . The 

distribution of the elastic modulus is varied from 0a  (threshold interpolation) to 1a   (power 

interpolation). The results are presented in Figure 6 and summarized in Table 4. As a gradually 

increases, the computational cost decreases, reflected in the reduced number of iterations. The 

objective function value decreases slightly, but the measure of non-discreteness increases. 

Table 4. Comparison of the optimal solution with respect to hybrid coefficient. 

Hybrid coefficient Iteration Compliance Mass Cost M1 M2 M3 

0a   151 231.8 0.4 0.270 0.021 0.034 0.020 

0.33a   109 228.7 0.4 0.275 0.052 0.075 0.033 

0.66a   81 226.6 0.4 0.283 0.078 0.111 0.069 

1a   86 224.8 0.4 0.289 0.059 0.1044 0.048 
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a) 0a   b) 0.66a   c) 1a   

Figure 6. Optimized solution in case of various hybrid coefficients. 
 

3.1.3 Influence of initialization 

In this study, the parameters are set as / 25b k  and 0.5a  . We investigate how the 

solution varies with initial values of x(0), ranging from 0.2 to 0.6. The results are presented in 

Table 5. The cases with x(0) = 0.3, 0.4 and 0.5 yield very favorable results, all with a small 

number of iterations. The case with x(0) = 0.4 achieves the smallest objective function value, but 

it also exhibits a relatively high measure of non-discreteness. Conversely, the cases with x(0) = 

0.3 and x(0) = 0.5 yield slightly higher objective function values but show very low values for the 

measure of non-discreteness. 

Table 5. Comparison of the optimal solution with respect to initialization. 

Initialization Iteration Compliance Mass Cost M1 M2 M3 

(0) 0.2x  159 254.8 0.354 0.255 0.009 0.023 0.007 

(0) 0.3x  80 236.6 0.388 0.273 0.046 0.072 0.037 

(0) 0.4x  60 229.2 0.4 0.276 0.105 0.116 0.056 

(0) 0.5x  90 233.5 0.4 0.276 0.064 0.066 0.026 

(0) 0.6x  153 255.8 0.398 0.243 0.018 0.009 0.006 

3.2. Steel and aluminum L bracket design 

The topology optimization problem for steel and aluminum L bracket is studied. The 

structure, boundary conditions and external forces are shown in Figure 3-b. The properties of 

candidate materials and their normalized values are listed in Table 6. The external force 1P 

and the domain size 40L  . The finite element method is applied with a mesh of 25600 four-

node elements. The parameters are set as follows: 6,r  0.5, 1 / 60,a b k   0.35Mf  ,

0.55Cf  . 

This research contributes to understanding the impact of cost function distributions on the 

solutions of the optimization problem. Multi-material cost distributions are examined in various 

scenarios, including linear, threshold, and power interpolations, as depicted in Figure 7-a. It's 

important to note that in this problem, the cost of the lightweight material (aluminum) is 

significantly higher than that of the heavy material (steel). Cost constraints are carefully selected 

to play a decisive role in determining the optimal solution. An illustration of the solution 
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corresponding to the linear cost distribution is provided in Figure 7-b. The results are presented 

in Table 7. In the case of power interpolation, the total cost is very low. This can be explained by 

the fact that when the density is concentrated around the densities of candidate materials, the 

cost associated with power interpolation is minimized compared to others, especially when the 

material volume is predominantly composed of steel. This aligns with the real-world scenario 

where steel is both cost-effective and sturdy. However, aluminum also has its strengths with 

unique mechanical properties. 

Table 6. Steel and aluminum material properties. 

Material properties  Normalized properties 

 Void Aluminum Steel   Void Aluminum Steel 

3( / )kg m  0 2700 7850    0 0.34 1.0 

E (GPa) 0 69 210  E Emin 0.33 1.0 

C (€/kg) 0 1.71 0.70  C 0 2.44 1.0 

Color White Blue Red  Color White Blue Red 

 

 

  
a) Cost in various interpolations b) The solution with linearinterpolation 

Figure 7. Optimized topology of steel and aluminum L bracket design. 

Table 7. Comparison of the optimal solution with respect to hybrid coefficient. 

Interpolation Iteration Compliance Mass Cost M1 M2 

Linear 155 227.2 0.327 0.550 0.080 0.079 

Threshold 142 229.9 0.323 0.550 0.089 0.086 

Power 124 219.7 0.342 0.232 0.099 0.106 

4. CONCLUSIONS 

This paper presents a hybrid threshold interpolation method for the elastic modulus to 

address multi-material topology optimization problems with mass and cost constraints. The 
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minimum compliance topology optimization problem is tackled using the PTO method. Density 

variables undergo a projection process to align with candidate material densities.  

In cases where threshold projection is not applied, the PTO method produces superior 

results, achieving lower objective function values than the ordered SIMP method. Moreover, the 

number of iterations done by the PTO method is substantially fewer than that of SIMP. 

However, the density distribution in both methods is poor. To address this, threshold projection 

is employed to transform the density, concentrating density variables on candidate material 

values. Numerical examples demonstrate that selecting the projection parameter b as a linear 

function is a suitable choice. 

When combining two distributions of the elastic modulus, it is observed that as the elastic 

modulus tends toward a power function, the objective function decreases, but the measure of 

non-discreteness increases. Conversely, when the elastic modulus tends toward a threshold 

function, the opposite effect is observed. To resolve this issue, a combination with hybrid 

coefficient a ranging between 0 and 1 can be chosen as a solution depending on specific 

requirements. The initial values of design variables also impact the optimization results. It is 

advisable to select initial design variables such that the initial mass slightly exceeds the upper 

mass constraint.  

By synthesizing results from various studies on the influence of parameters such as filter 

radius, projection parameter, hybrid coefficient, and initial design variables, we can determine 

an appropriate model to effectively address each specific optimization problem. 
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