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Abstract. This research focus on preparation of brookite TiO, materials from two different
precursor as titanium glycolate and titanium lactate complexes. The single phase of brookite
TiO, is synthesized successfully by hydrothermal process and confirmed by the X-ray diffraction
(XRD) results. The scanning electron microscope (SEM) analysis shows that the nanorod and
cubic-like morphology of brookite TiO, material are obtained by applying the titanium glycolate
and lactate complex, respectively. The synthesized conditions are also investigated by changing
the type and the amount of OH" sources. All the single phase brookite TiO, samples are
determined to contain a small amount of oxygen vacancies, which can by proved by the UV —
Vis Diffuse reflectance spectroscopy (UV-Vis DRS) and X-ray photoelectron spectroscopy
(XPS) measurement. The photoactivities of as-prepared brookite catalysts are tested in the
application of methyl orange (MO) degradation and the hydrogen evolution reaction (HER),
showing that the prepared cubic-like nanoparticle brookite sample Ti-NP-U9 exhibits higher
activities compared with nanorod brookite TiO, and even the commercial TiO, P25. These
results showing that the activity of brookite TiO, is highly depended on the morphology and
promising for further study to enhance the photocatalytic performance.

Keywords: TiO,; brookite; nanorods brookite; cubic-like nanoparticles brookite; photocatalytic
degradation; hydrogen evolution reaction
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1. INTRODUCTION

Among many kinds of semiconductors, titanium dioxide (TiO,) has proven to be an outstanding
material as a promising photocatalyst, with numerous advantages like abundance, nontoxic nature,
and photochemical stability [1 - 3]. Generally, TiO, exists mainly in three crystalline polymorphs as
anatase, rutile, and brookite [4, 5]. While rutile is the stable phase, anatase and brookite are
metastable and, brookite TiO, are readily transformed to rutile when heated at high temperature [6,
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7]. During the sol-gel method, TiO, is normally formed in anatase phase, whereas brookite is often
observed as a by-product of the precipitation. TiO, materials contain single phase of brookite without
anatase or rutile is difficult to synthesize, therefore, photocatalytic activity research of this polymorph
is still limited.

Brookite TiO, powder was firstly synthesized in the late 1950s by using titanium (IV)
compounds during hydrothermal processes. A mixture of anatase and brookite could be obtained by
thermal treatment of the amorphous TiO, powder [8]. Keesmann et al. synthesized pure brookite by
hydrolysis of titanium tetraisopropoxide to obtain amorphous TiO,, following by hydrothermal
reaction [9]. Many studies indicate that the formation of single phase brookite highly depends on the
synthesis conditions and are difficult to control [10,11]. To inhibit the contamination of other phases,
Kominami et al. prepared microcrystalline brookite by solvothermal reaction of oxobis(2,4-
pentanedionato-0,0’) titanium (TiO(acac),) with ethylene glycol at 300 °C [12]. Until now, many
inorganic and organic precursors have been employed to prepare brookite powder, such as TiCl, [13,
14], Ti(SOy), [15,16], titanium tetraisopropoxide [17], titanium butoxide [18], etc. Numerous studies
indicate that water-soluble titanium complexes remain stable for years as neutral pH aqueous
solutions, without precipitate formation, unlike traditional titanium sources like titanium chloride,
titanium sulfate, and titanium alkoxide, which readily hydrolyze in the presence of moisture
[19,20,21]. Additionally, these water-soluble titanium complexes are stable across a broad pH
spectrum, from highly acidic (<1) to alkaline (approx. 14), even at room temperature. As a result,
they can be easily managed and utilized under diverse synthesis conditions. The ligands in these
complexes are readily available organic acids, such as glycolic and citric acids, making the use of
these titanium compounds in the production of titanium-based materials potentially more cost-
effective and less harmful in terms of by-products. Therefore, these water-soluble titanium
complexes are considered more environmentally friendly than traditional titanium agents.

In terms of photocatalytic activity, the phase component of TiO, materials is one of main
factors significantly influencing to the performance, due to directly concerning to electronic
properties (bandgap, photoinduced electron — hole separation, trapping sites) [22]. While the
photoactivities of anatase and rutile TiO, have been widely investigated, brookite TiO, is still poorly
researched due to difficulty in synthesis. Nevertheless, density functional theory calculations have
exhibited that the exposed facet (210) of brookite is more efficiency in photocatalytic application
comparing to the common surface (101) of anatase [23]. Li et al. researched different polymorphs of
TiO, and proved that nanoplates brookite showed higher activity for the bleaching of methyl orange
under UV light [24]. Brookite TiO, also was found to be more efficient in the application of
photocatalytic degradation of Rhodamine B [25, 26].

Herein, in this work, the titanium glycolate and titanium lactate complexes have been selected
to synthesize pure phase brookite TiO, materials during hydrothermal reactions. The phase structure,
morphologies, and characteristics of as-prepared materials were analyzed by listed methods. The
photocatalytic activities of all samples were investigated by the photocatalytic degradation of methyl
orange and the photo-hydrogen evolution reaction under simulated solar light and white light
irradiation, respectively. Noteworthily, the performance of cubic-like nanoparticle brookite TiO,
showed higher activity comparing to nanorod material and even commercial P25.

2. EXPERIMENTAL SECTION

2.1. Chemicals

Metallic titanium powder (-325 mesh, 99.99 %) and urea (NH,CONH,, 99 + 100.5 %) were
purchased from Alfa Aesar. Aqueous ammoniac (NHz, 25 %) and hydrogen peroxide (H,0,, 30
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%) were obtained from Labochem and VWR Chemical BDH, respectively. Glycolic acid
(C,H403, 99 %) and titanium (IV) chloride (TiCl,, for synthesis) were purchased from Sigma
Aldrich. Sodium lactate (CsHsNaOs, 60 % in water) was purchased from TCI. Triethanolamine
(CsH1sNOg3, 98 %) and methyl orange (CisH1sNsNaOsS, 99 %) were obtained from Sigma
Aldrich and Acros Organics, respectively. Aeroxide TiO, P25 was used as catalyst reference and
purchased from Evonik Degussa.

2.2. Materials preparation
2.2.1. Synthesis of nanorods brookite TiO;

In a typical synthesis, titanium powder (478 mg, 10 mmol) was reacted with aqueous NH;
(11.2 mL, 25 %) and H,0, (40 mL, 30 %) in a 100 mL conical flask at 4-5 °C overnight to form a
yellowish transparent solution. Subsequently, glycolic acid (27 mmol) was added, and the mixture
was stirred at 50 °C for 30 min. The solution was then heated to 90 °C to remove water and excess
H,0,, affording a solid yellow titanium complex.

Ti + 3 H,0, + NH; = [Ti(OH);0,] + 2 H,0 + NH,* 1)
4 [Ti(OH),0,] + 6 CzH405 + 2 Hy0 = [Tis(CoH:09)4(CoH:0:):(02).0]° + 10 H,O + 2 H0"  (2)

For the next step, the obtained titanium complex (10 mmol) was completely dissolved in 20
mL of distilled water. A certain amount (approx. 10.7 mL) of the complex solution and 10 mL of
NHj; solution (25 %) were transferred into a 45 mL Teflon-lined stainless-steel autoclave. The
hydrothermal reaction was performed at 180 °C for 24 hours. When finished, the produced solid
materials were centrifuged and washed with distilled water at least 5 times. Finally, the white
powders were dried overnight at 80 °C and denoted as Ti-NR-N. For comparison, 10 mL of NH;
solution was altered by 10 mL of aqueous solution contained 1; 1.5; and 2 g of urea,
respectively, in the hydrothermal process. The final products were denoted as Ti-NR-Ux, where
x was the amount of employed urea during synthesis process.

2.2.2. Synthesis of nanoparticles brookite TiO,
TiCl, + 6 H,0 > [Ti(OH),(OH,)J** + 2H" + 4 CI (3)
[Ti(OH),(OH,)4]* + 3 C3H405” = [Ti(C3H405)5]* + 2 OH + 4 H,0 (4)

Briefly, 1.65 mL of titanium (V) chloride was added dropwise into a 100 mL conical flask
contained 60 mL of distilled water, which was cooled by an ice-water bath. After 30 minutes of
stirring, an acidic solution that contains a water-soluble titanium complex was formed (Equation
3). Subsequently, a certain amount of urea (3; 5; 7; and 9 g, respectively) was added and
dissolved in the solution with continuous stirring. Then, 5 mL of sodium lactate liquor was
dropped in the mixture and stirred for more 30 minutes to form the titanium lactate complex
(Equation 4). All the prepared solution was transferred into a 125-mL Teflon autoclave and the
reaction was carried out at 200 °C in 12 hours. The final crystallization products were separated
by centrifugation, washed at least 5 times with water, dried at 80 °C overnight, and denoted as
Ti-NPx (where x is the amount of urea using in the hydrothermal process).

2.3. Material characterization

The X-ray diffraction patterns were measured with an X’pert Pro diffractometer
(Panalytical, Almelo, the Netherlands) using a scanning rate of 0.050/s and monochromatized
Cu Ka radiation.
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The SEM micrographs were recorded using a Merlin VP compact device (Zeiss,
Oberkochen, Germany).

The BET surface areas and porosities of the samples were obtained by N, adsorption at -
196 °C using a Micromeritics ASAP 2020 (USA) instrument and calculated by the Brunauer-
Emmett — Teller (BET) and Barrett- Joyner-Halenda (BJH) methods, respectively. Prior the
analysis, the samples were degassed at 200 °C for 10 hours.

The light absorption was determined by UV — Vis Diffuse reflectance spectroscopy (UV-
Vis DRS) with a Carry-5000 (Agilent, USA) spectrophotometer from 200 to 800 nm with BaSO,
as the reference.

The XPS (X-ray Photoelectron Spectroscopy) measurements were performed on an
ESCALAB 220iXL (Thermo Fisher Scientific) with monochromated Al Ka radiation (E =
1486.6 eV). Samples are prepared on a stainless-steel holder with conductive double-sided
adhesive carbon tape. The measurements are performed with charge compensation using a flood
electron system combining low energy electrons and Ar+ ions (pAr = 1x10-7 mbar). The
electron binding energies are referenced to the C 1s core level of carbon at 284.8 eV (C-C and
C-H bonds). For guantitative analysis, the peaks were deconvoluted with Gaussian-Lorentzian
curves using the software Unifit 2023. The peak areas were normalized by the transmission
function of the spectrometer and the element specific sensitivity factor of Scofield.

2.4. Investigation of photocatalytic activities
2.4.1. Photocatalytic degradation reaction

The photocatalytic activity of the as-prepared materials was evaluated by degrading methyl
orange (MO) under artificial sunlight (white light). Typically, 30 mg of brookite TiO, catalyst were
dispersed in 60 mL of MO solution (30 mg/L) in a photocatalytic reactor (Figure S1). Before
illumination, adsorption—desorption equilibrium was established by stirring in the dark for 30 min.
The reactor was irradiated in a SUNTEST CPS+ system (ATLAS) simulating sunlight (A =290-800
nm, 80,000 Lux) (Figure S2) for 3 h. During irradiation, 1 mL aliquots were withdrawn at intervals,
filtered, and analyzed by HPLC (Agilent 1260) with a Phenomenex C18 column (Kinetex, 2.6 pm,
150 x 3 mm). The mobile phase was acetonitrile (0.05 vol% TFA)/water (0.15 vol% TFA) = 80:20
viv, flow rate 0.6 mL-min~ 1, column temperature 40 °C, and injection volume 12 pL. UV detection
was performed at 500 nm. TOC contents of initial and final solutions were measured using a TOC
analyzer (Multi-N/C 3100, Analytik Jena).

2.4.2. Photocatalytic hydrogen evolution reaction

Photocatalytic hydrogen evolution reaction (HER) was carried out in a 100 mL double jacket
cylindrical glass reactor (Figure S3). The reaction temperature was kept at 25 °C by flowing water
through the outer wall of the reactor. A 300 W Xenon lamp (LSE341, LOT-QuantumDesign)
equipped with a 90 ° deflection reflector system (MS 90) containing a dichroic mirror was applied
as the light source (Figure S4). Typically, 25 mg of catalyst, 45 mL of distilled water, and 5 mL of
triethanolamine (TEOA) were added into the photo-reactor. Subsequently, the obtained suspension
was homogenized in an ultrasonic bath for 15 min. Afterwards, the photoreactor was installed into
the testing system and the suspension was purged with Argon at a high flow rate (approx. 130
mL/min) to remove the oxygen content in the suspension and in the system lines for 30 minutes
followed by reducing the Argon flow rate to 2.5 mL/min and kept in the photocatalytic process as
carrier gas. The gas content and the formed hydrogen was detected online every 15 minutes by gas
chromatography (GC, Agilent 6890) using a thermal conductivity detector (TCD). After purging
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the photo-reactor with Argon, the measurement by GC was performed to ensure the amount of
oxygen inside the system was very low before switching on the lamp. The reaction was carried out
in 5 hours of white light irradiation.

The amount of H, produced per time (hydrogen production rate) was quantized using the
following equation:

_ FarX Apg2x60000
Rz

= mol-h*
VinXfa2%x100vol% (W )

where: Fp, is the Argon flowrate (mL-min™); Ay, is the area of the hydrogen peak detected by
GC; Vj, is the molar volume at 25 °C (V,, = 24.5 mL-mmol™); and fy;, is the calibration factor of

hydrogen (was determined as vol%). The amount of formed hydrogen with time (umol) was
calculated by integrating the Ry, value over different reaction duration.

3. RESULTS AND DISCUSSION

3.1. Structure and Morphology
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Figure 1. The XRD patterns of the TiO, materials synthesized from a) titanium glycolate complex and
b) titanium lactate complex.

The X-ray diffraction patterns (Figure 1a, b) demonstrate the successfully synthesis of the
brookite TiO, materials, with the presence of the (211) characteristic peak at 26 = 30.83° (ICDD
No0.01-076-1934) [18,27]. According to Figure 1a, the Ti-NR-N samples contain highly pure
brookite phase, in the absence of anatase characteristic peak at 20 = 62.57 °, when synthesized
from titanium-glycolate complex with NH; aqueous solution during the hydrothermal processes
[28]. In the hydrothermal conditions, urea is commonly utilized to supply a consistent source of
hydroxide anions via its decomposition, generates the OH™ anion in the reaction solution, thus
providing a basic environment conducive to the formation of brookite TiO,, as indicated by the
chemical reaction below [29,30]:

NH,(CO)NH, + 3H,0 = 2NH,-OH + CO,

The small diffraction peak observed at position of 20 = 27.44 ° obtained when using 1 g of urea
can readily be explained by the (110) plane of rutile TiO,, indicating a mixture of brookite/rutile
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phases in the Ti-NR-U1 sample [31,32]. If the amount of urea was increased to 1.5 g and above, pure
brookite phase could be formed when using the titanium glycolate complex. The pH value of final
solution is also measured after the hydrothermal process, and in range from 9 to 10 when synthesis
with NH; solution or with 1.5 g and 2 g urea, respectively. Figure 1b also illustrates high quality
brookite TiO, synthesized by using titanium lactate as precursor during the hydrothermal process.
When the amount of urea introduced was too low, the material has poor crystallization ability of
anatase phase and consists of a small amount of brookite (the Ti-NP-U3 sample). When the highest
amount of urea was employed, the pH value of final solution was detected as approx. 9. It could be
seen from Figure 1b that, single phase of brookite TiO, can be only formed at high pH value when
employing the titanium lactate complex during hydrothermal process, corresponding to the XRD
patterns of Ti-NP-U5, Ti-NP-U7, and Ti-NP-U9 sample.

B

Figure 3. SEM images of nanoparticles brookite TiO, synthesized from titanium lactate complex

The morphology of the formed brookite phase is affected by the Ti-precursor used.
According to Figure 2, the brookite TiO, materials synthesized by titanium glycolate complex
obtain the nanorods morphology (Ti-NR-N, Ti-NR-U1, Ti-NR-UL1.5, and Ti-NR-U2 samples,
respectively). The size of the nanorods depends on the base sources employed during the
hydrothermal processes. When using the NHs; solution to adjust the pH value of the
hydrothermal process, the TiO, nanorods have a diameter up to 80 nm and a length up to 250
nm. Meanwhile, when using urea instead of NH; solution, the nanorods are smaller and the rods
are more uniform. The diameter of the rods decreases to approx. 20 nm and its length to about
70 nm. When the brookite TiO, was prepared from titanium lactate complex, the morphology
has been changed, as shown in Figure 3. When using 5g of urea, cubic nanoparticles are formed
with a particle diameter of approximately 30 to 40 nm (Ti-NP-U5 material). Increased urea
amount during synthesis process leads to TiO, crystals consist of ununiform truncated tetragonal
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shape nanoparticles, which had the length up to ~ 90 nm, the width up to 50 nm, and a thickness
up to 20 nm (Ti-NP-U7 and Ti-NP-U9 samples, respectively).
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Figure 4. The N, adsorption — desorption isotherms of brookite TiO, synthesized from: a) titanium
glycolate complex and b) titanium lactate complex.

1.6 14
—pP25 a) — P25 b)
144 —— Ti-NR-N 124 ——Ti-NR-N
— Ti-NR-U1 — Ti-NR-U1
~127 ——Ti-NR-UL5 « 10{ — Ti-NR-ULS
3 —— Ti-NR-U2 o —— Ti-NR-U2
L1.04 =
8 S 8
£ 0.8 @
2 L 6
S 0.6 2
2 A
<o4
0.2 21
0.0 : ‘ 0 A R —
200 400 600 800 250 2.75 3.00 3.25 350 3.75 4.00 4.25
Wavelength (nm) hv (eV)
1.6 14
—pP25 c) — P25 d)
1.4+ —— Ti-NP-U5 124 —Ti-NP-U5
— Ti-NP-U7 — Ti-NP-U7
1.24 . — T
= —— Ti-NP-U9 o 104 Ti-NP-U9
8101 F:
3 § o
£ 0.8 3
2 6
0.6 2
2 N
<04
0.2 21
0.0 . : 0 - ; . : . :
200 400 600 800 250 2.75 3.00 3.25 3.50 3.75 4.00 4.25
Wavelength (nm) hv (eV)

Figure 5. (a) UV-Vis DRS and (b) Tauc plot of nanorod brookite TiO,; (c) UV-Vis DRS and (d)
Tauc plot of nanoparticle brookite TiO,

The specific surface area of TiO, catalyst is a critical influence factor to the photoactivities [33 -
35]. The BET measurement of all different brookite TiO, materials are summarized in Table 1. When
synthesized from titanium glycolate complex, the specific surface area of the material doubled when
replacing the base source from NH; aqueous solution to urea. This result is in relevant to the
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significant change of the particle parameters obtained by SEM images. Continuing to increase the
amount of urea during synthesis slightly increases the specific surface area of the final material.
Besides, this value of brookite TiO, material witnessed slight changes when employed different
amounts of urea during the hydrothermal process when using the titanium lactate complex. The N,
adsorption — desorption isotherms of all materials include hysteresis loops (Figure 4). The isotherms
could be assigned to IV type for similar mesoporous materials, according to IUPAC classification
[36, 37].

The UV-Vis DRS results of as-synthesized nanorods brookite TiO, samples are presented in
Figure 5a, with Aeroxide P25 was measured as reference material. Strong absorption in the
ultraviolet region (below 420 nm) is observed from all TiO, samples. However, comparing to P25,
nanorods samples exhibit light absorption in the wavelength of visible range. The sample Ti-NR-
UL1.5 exhibits higher light absorption than the others. This behavior can be attributed to the formation
of oxygen vacancies (OVs) inside the TiO, lattice during synthesis processes [38,39]. Due to the
Tauc plot (Figure 5b), the bandgap energies are calculated to be 3.28, 3.12, 3.2, and 3.25 eV
corresponding to Ti-NR-N, Ti-NR-U1, Ti-NR-U1.5, and Ti-NR-U2 material, respectively. The XRD
analysis indicates that the Ti-NR-U1 material comprises two TiO, phases as brookite and a minor
quantity of rutile. Rutile possesses an indirect bandgap, approximately 3.0 eV, whereas brookite has a
direct bandgap [40,41]. The synthesized materials' calculations are predicated on brookite's direct
bandgap, suggesting that the presence of rutile's indirect bandgap, which is lower than brookite's,
may have decreased the overall bandgap of the Ti-NR-U1 sample comparing to the others. The
optical properties of nanoparticle materials show similarities with nanorods samples (Figure 5c),
which indicate the possibility of OVs formation during the hydrothermal synthesis despite of using
different titanium precursors. All samples show the absorbance capability in the visible light region,
with the highest of Ti-NP-U7 sample. In Figure 5d, the bandgap energy of Ti-NP-U5, Ti-NP-U7, and
Ti-NP-U9 are estimated as 3.26, 3.24, and 3.26 eV, respectively.

Table 1. BET surface area of the as-prepared TiO, samples.

Materials Surface area Pore radius Total pore Bandgap
(m*-g™) (nm) volume (eV)
(cm’g™)

Ti-NR-N 20.7 15.8 0.18 3.28
Ti-NR-U1 45,5 9.0 0.23 3.12
Ti-NR-U1.5 46.4 9.1 0.23 3.2
Ti-NR-U2 48.5 9.0 0.25 3.25
Ti-NP-U5 40.6 8.6 0.22 3.26
Ti-NP-U7 39.7 8.6 0.25 3.24
Ti-NP-U9 45.1 8.9 0.26 3.26

XPS measurement was conducted to analyze the chemical states of the Ti-NR-N, Ti-NR-
U1.5, and Ti-NP-U9 samples (Figure 6). The presence of Ti and O elements in as-synthesized
samples are revealed by the survey spectrums (Figure 6a). The C element appeared in all cases is
attributed to surface carbon from the XPS internal standard measurement. Figure 6b described
the characteristic Ti 2p peak of all materials. With two nanorod samples, the Ti 2p peaks are
located at 458.5 and approx. 464.1 eV, corresponding to Ti 2ps, and Ti 2py,, respectively [42].
When synthesized the nanoparticle material from titanium lactate complex, these peaks are
slightly shifted to lower binding energy (458.3 eV and 464.0 eV for the Ti 2ps;, and Ti 2py,
respectively). In Figure 6c, the largest O 1s peak of all samples relate to the Ti — O bond, while
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the small peaks at approx. 530.8 eV could be associated with the surface absorbed oxygen
[42,43]. Furthermore, all the brookite TiO, samples synthesized from titanium complexes
possess a small characteristic O 1s peak at the position of 532.1 eV, 531.9 eV, and 531.8 eV of
Ti-NR-N, Ti-NR-U1.5, and Ti-NP-U9, respectively, which can be ascribed to oxygen vacancies
[44,45]. In conclusion, the obtained XPS results of Ti-NR-N, Ti-NR-U1.5, and Ti-NP-U9
sample, in agree with the UV-Vis DRS analysis, reveal the formation of oxygen vacancies
during the synthesis of brookite TiO, materials by hydrothermal method employing titanium
glycolate and lactate complexes.
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Figure 6. High — resolution XPS spectra of a) survey spectrum; b) Ti 2p peaks; and c) O 1s peaks of Ti-
NR-N, Ti-NR-U1.5, and Ti-NP-U9 materials.

3.2. Photocatalytic activities
3.2.1. Photocatalytic degradation of methyl orange

Figure 7a describes the efficiency of photocatalytic degradation of methyl orange (MO) solution
under simulated sunlight condition of brookite TiO, nanorods samples synthesized using different
OH" sources as NH; and urea. When using NH; aqueous solution in the synthesis process, the
resulting Ti - NR - N catalyst exhibits the lowest activity with only circa 60 % of MO is decomposed
after 3 hours. Meanwhile, when using urea as a base source for synthesis, the obtained catalysts show
significantly higher activities and achieves the best treatment efficiency of 99 % of MO with sample
Ti - NR - U1.5. However, in comparison with the commercial product as Aeroxide TiO, P25, the
activities of as-prepared nanorods catalysts are still remarkably lower. The brookite TiO, nanorods
sample with the highest activity has a reaction rate constant k of 0.023 min™, lower than that of P25
with the k value reaching 0.033 min™ (Figure 7b). The above analysis results are also consistent with
the TOC measurement results of the final solution, showing the ability of P25 to decompose organic
substances into CO, and water very strongly during the reaction with the remaining organic carbon
content only reached 3.1 %. Meanwhile, the nanorods Ti-NR-U1.5 sample with the best activity still
had 20 % organic residue left (Figure 7c).

Figure 7d shows the photocatalytic degradation activities of cubic-like nanoparticle brookite
TiO, catalysts synthesized using different amounts of urea. Ti-NP-U3 material shows the lowest
activity and not being able to degrade MO completely after 3 hours of irradiation. This can be
explained by the XRD result, showing that Ti-NP-U3 contains restricted crystallinity TiO,, which
may exhibit the photocatalytic activity of the catalyst [46,47]. However, the materials synthesized
with higher amount of urea inhibit very high photocatalytic activities and completely decompose MO
after 3 hours of solar irradiation. Furthermore, Ti-NP-U7 and Ti-NP-U9 catalysts reveal superior MO



Vu Viet Thang, Norbert Steinfeldt, Ta Hong Duc

conversion ability compared to the commercial P25. Figure 7e shows that the reaction rate constant k
of the two samples Ti-NP-U7 and Ti-NP-U9 reached 0.036 and 0.042 min™, respectively, higher than
the value of 0.033 min™ of P25. Figure 7f shows that the both TOC values of Ti-NP-U9 and P25 are
similar, only 3.1% remains after reaction.
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Figure 7. The photocatalytic degradation of methylorange under solar light by different TiO, materials (a,
b); the pseudo-first-order Kinetics fitted curves of reactions (c, d); and the TOC removal comparison (e, f).

3.2.2. Photocatalytic hydrogen evolution reaction

Several studies indicated that the photocatalytic hydrogen evolution from anatase/brookite
composites and pure brookite surpasses that of pure anatase TiO,, and even commercial P25 under
UV visible light irradiation [48,49]. Therefore, two brookite TiO, samples as nanorods Ti-NR-U1.5
and cubic-like nanoparticles Ti-NP-U9, which exhibited best MO photodegradation activities, were
chosen to evaluate their activities in the photocatalytic hydrogen evolution reaction using TEOA as a
sacrificial agent under white light irradiation. Figure 8a shows the amount of hydrogen produced
profile under 5 hours of white light irradiation. In the photodecomposition reaction, brookite
nanorods Ti-NR-U1.5 material has significantly lower activity than P25. However, in the hydrogen
generation application, the amount of hydrogen produced by two material samples are almost
equivalent. For the brookite cubic-like nanoparticles Ti-NP-U9 sample synthesized from titanium
lactate complex, the photochemical hydrogen generation activity is clearly superior comparing to P25
and the brookite nanorods sample synthesized from titanium glycolate complex. The hydrogen
evolution rate over reaction time was estimated (Figure S5) and Figure 8b illustrates that the average
hydrogen generation rate of P25, Ti-NR-U1.5, and Ti-NP-U9 is 240.5, 232.2, and 317.9 umol-h™-g?,
respectively. The photo-HER results prove that the brookite TiO, synthesized from titanium
glycolate and lactate complexes have outstanding potential in this application, even in comparison
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with the commercial product P25. Furthermore, the different activities in the HER reaction of the two
nanorods and cubic-like nanoparticles samples showed that the photocatalytic activities of pure phase
brookite TiO, materials strongly depends on their morphology and exposed-facets, which is
consistent with some previously published reports on the influence of facet-controlled brookite TiO,
on their photocatalytic activity. [50, 51]
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Figure 8. a) Hydrogen generation profile and b) the average hydrogen evolution rate of different
brookite TiO, in comparison with P25.

4. CONCLUSIONS

The single phase brookite TiO, have been synthesized successfully from two different
titanium complexes by the hydrothermal method. The nanorods brookite TiO, can be obtained
by using titanium glycolate complex, meanwhile, the formation of cubic-like nanoparticle
morphology is occurred with the precursor as titanium lactate complex. The synthesized
conditions were also investigated when adjusted the OH™ sources during hydrothermal processes
by using NHs aqueous solution or different amount of urea. All as-prepared brookite TiO,
materials contain a low amount of oxygen vacancies, confirmed by the UV-Vis DRS and XPS
analysis results. The photocatalytic activities of all synthesized catalysts are evaluated in the
application of methyl orange degradation, with the reaction rate constant of nanorod Ti-NR-U1.5
and cubic-like nanoparticle Ti-NP-U9 materials were 0.023 min™ and 0.042 min™, respectively,
incomparison with 0.033 min™ of commercial P25. Furthermore, in the HER tests, the average
hydrogen evolution rates of P25, Ti-NR-U1.5, and Ti-NP-U9 samples were 240.5, 232.2, and
317.9 umol-h™-g, respectively. The results indicate that single-phase brookite TiO2 is highly
promising for photocatalytic degradation and hydrogen evolution reactions. Moreover, the as-
prepared cubic-like nanoparticle brookite demonstrating higher photocatalytic activity than the
nanorod brookite sample suggests that the overall performance of brookite TiO, materials is
significantly influenced by their morphologies and exposed facets.
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