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Abstract. Cable-stayed bridges are often subjected to cable vibrations caused by wind, traffic, 

and other dynamic loads, which can significantly reduce their structural lifespan. To address this 

issue, our study proposes a two-floor damping design that leverages the superelasticity and 

superior energy dissipation capabilities of shape memory alloys (SMA). A simplified 

constitutive model was developed to simulate the superelastic behavior of SMA, optimizing 

critical parameters such as length, diameter, and installation position on cable-stayed bridges. 

Through simulations and dynamic response analysis, the SMA damper demonstrated exceptional 

effectiveness in dissipating energy across various vibration modes, significantly enhancing 

structural stability. Furthermore, this paper highlights the advantages of the two-floor SMA 

damper in mitigating cable vibrations under diverse oscillation modes and identifies an optimal 

set of parameters for practical installation, contributing to cost efficiency and extended bridge 

lifespan. A comparison with Tuned Mass Damper (TMD) results is also carried out to evaluate 

the damping efficiency of the SMA device. 

Keywords: Shape memory alloy, Martensitic phase transformation, Superelastic, Vibration, Damper. 
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1.  INTRODUCTION 

Cable-stayed bridges are a popular choice in modern engineering due to their aesthetic 

appeal, long spans, and construction efficiency. However, these bridges often experience 

significant vibrations in the cables caused by wind, traffic, and other dynamic loads, leading to 

structural fatigue and reduced lifespan [1, 2]. Traditional methods to mitigate these vibrations 
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typically use passive devices such as tuned mass dampers, friction dampers, viscous dampers, 

and fluid-based damping systems [3, 4]. While these methods provide some benefits, they also 

have certain limitations, such as limited damping capacity and maintenance challenges [5].  

In recent years, shape memory alloys have emerged as a potential solution for vibration 

control due to their unique superelastic properties and ability to absorb and dissipate energy. 

SMA materials, particularly Nickel-Titanium (NiTi) alloys, exhibit significant hysteresis and can 

withstand large deformations while returning to their original shape, making them ideal for 

damping applications [6-9]. Research has shown that using SMAs in damping systems can 

significantly improve the performance of cable-stayed bridges, reducing harmful vibrations and 

extending the bridge's lifespan [10, 11]. One of the main advantages of SMAs is their 

exceptional flexibility, allowing them to function effectively in a wide range of environmental 

conditions. By adjusting the quantity and/or characteristics of the SMA components, it is 

possible to optimize their energy dissipation capabilities, thereby enhancing damping efficiency. 

Furthermore, SMAs exhibit excellent fatigue resistance under large deformation cycles and 

ensure high durability and reliability over long periods of use. These properties are particularly 

important for cable-stayed bridges, where weather conditions can change rapidly and lead to 

unpredictable dynamic loads [12]. The superelastic properties of SMAs allow them to absorb 

and dissipate large amounts of energy from vibrations, mitigating negative impacts on the bridge 

structure [13, 14]. SMA dampers, such as the proposed SMAS-TMD with pre-tensioned SMA 

helical springs [9], have shown superior vibration reduction capabilities compared to traditional 

dampers. Additionally, the use of SMA dampers can effectively prevent the common detuning 

phenomena observed in optimally tuned mass dampers [15]. 

This paper presents the detailed design, site survey, and performance evaluation of SMA 

dampers specifically developed for cable-stayed bridges. Key design factors, such as the optimal 

length and diameter of SMA wires, are analyzed to maximize damping efficiency. A 

comprehensive site survey is conducted to identify optimal installation locations, ensuring the 

dampers deliver the highest performance. 

To support this, we propose a simulation model for the superelastic behavior of SMA 

materials, providing a deeper understanding of their operating mechanisms and enabling damper 

design optimization. The model is advantageous due to its simplicity and the use of 

straightforward solution algorithms, making it practical for engineering applications. 

Additionally, this study examines the dynamic response of cable-stayed bridge cables across 

multiple natural oscillation modes, offering valuable insights into the performance of SMA 

dampers under varying vibrational conditions. 

The organization of the paper is as follows: section 2 describes the design of the two-floor 

damper based on the superelastic properties of SMA material, ensuring stability and optimal 

damping performance. Section 3 develops the fundamental equations for a simplified 

constitutive model of SMA, grounded in thermodynamic principles and stress-strain 

relationships, while also presenting the dynamic equations for inclined cables with forces from 

the SMA damper incorporated. In section 4, numerical results are also compared with those of a 

TMD to assess the performance of the SMA damper. Moreover, this section also investigates 

focuses on optimizing the area, length, and installation position of the SMA damper, as well as 

evaluating its damping effectiveness across the cable's natural oscillation modes. Finally, the 

conclusions are summarized in Section 5. 

2. CONCEPT OF SMA DAMPER 
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In this concept, we aim to present a two-floor SMA damper with high energy dissipation 

capacity and complete deformation recovery. A central plate is directly connected to the cable-

stayed cables, ensuring that the SMA wires operate under alternating tension as the cables 

vibrate. The SMA wires are arranged at the four corners of a square layout, providing enhanced 

stability for the device. This damper is specially optimized to reduce vibrations in the cables of 

cable-stayed bridges by utilizing shape memory alloy wires, known for their unique superelastic 

properties. These properties enable efficient energy absorption and recovery after repeated 

cycles of deformation. The prototype of the SMA damper, shown in the Fig 1, consists of three 

main parts: 

Connection System to the Bridge: 

This system secures the damper to the bridge structure. The connection ensures that the damper 

remains stable and can effectively transmit forces from the vibrating cables to the SMA wires. 

Central Plate Moving with the Cable-Stayed Cables: 

The central plate is designed to move synchronously with the cable-stayed cables. This plate 

transfers the vibrational forces from the cables to the SMA wires, ensuring efficient energy 

absorption by the SMA wires. 

Connection System to the Cable-Stayed Cables: 

This system links the damper directly to the cable-stayed cables. The robust connection allows 

the damper to absorb and dissipate the vibrational energy transmitted through the cables. 

 

Figure 1. Overall concept of a two-stage damper using shape memory alloy materials. 

1. Connection System 

to the Bridge 

2. Central Plate Moving 

with the Cable-Stayed 

Cables 

3. Connection System to 

the Cable-Stayed Cables 

SMA wires 
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The SMA wires play a crucial role in the damper, serving as the core component that maximizes 

the device's energy dissipation efficiency. With a smart concept that incorporates four wires 

within the structure, the SMA wires are capable of evenly absorbing and distributing vibrational 

energy. Made from Nickel-Titanium alloy, known for its exceptional strength and fatigue 

resistance, the SMA wires ensure efficient performance through repeated cycles of mechanical 

loading and unloading. This concept not only significantly reduces harmful vibrations but also 

extends the lifespan of cable-stayed bridges. The strategic arrangement and unique shape-

memory properties of the SMA wires ensure that the damper operates reliably and stably, 

making it an ideal solution for vibration control in modern bridge engineering. 

3. BASIC EQUATIONS 

3.1. Constitutive model for superelastic shape memory alloys 

Free energy 

In the one-dimensional (1D) model of Shape Memory Alloys, the thermo-mechanical behavior is 

characterized by a trio of variables: total strain ( ), temperature ( ), and the martensite fraction 

( ). Here,   represents the deformation experienced by the material,   indicates the operational 

temperature, and   denotes the proportion of the martensitic phase within the alloy. The 

martensite fraction   ranges from 0 to 1, where     signifies the material is entirely in the 

austenitic phase, and     indicates a fully martensitic phase. This modeling approach provides 

a simplified yet effective means to describe the phase transformation behavior and the 

corresponding mechanical response of SMAs under various thermal and mechanical loads, 

facilitating the concept and optimization of SMA-based devices. The Helmholtz free energy 

density which depends on state variables and internal variables is chosen as: 

   (     ) (1) 

Base on the work by Hoang and Nguyen [16], we propose that the Helmholtz free energy (per 

unit volume) under isothermal conditions is defined by the following function: 

 (       )   
 

 
(     ) (     )

 
  ( ) (2) 

where   is constant modulus,   is a constant and     represents the inelastic strain. The 

hardening function is designed to capture the interactions between the austenitic and martensitic 

phases, as well as the interactions among the different martensitic variants. This function,  ( ), 

takes the following form during both the forward and reverse phase transformations: 

 ( )  {
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where    , and   are constant material parameters. 

Evolution of internal state variables 

The Clausius-Duhem inequality can be expressed as: 

(  
  

  
)  ̇ ( 
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A sufficient condition for inequality (4) to be satisfied for any  ̇ is that the respective coefficients 

must be zero, thus yielding: 

  
  

  
 (     ) (     ) (5) 

Now that we have identified the set of internal state variables     and  , we need to determine 

the evolution equations for these internal state variables. The Clausius-Planck inequality can be 

expressed as follows: 

( 
  

    
)  ̇   ( 

  

  
)  ̇    (6) 

By substituting equation (2) into equation (6), we obtain: 

(     ) (     ) ̇   ( 
 

 
 (     )

 
 

  ( )

  
)  ̇    (7) 

The inelastic strain,    , depends on the martensite fraction   [17]: 

          ( ) (8) 

   is the maximum residual strain, sgn(•) is the sign function, and    is the uniaxial stress. From 

equation (8) and substituting equations (7), we derive: 

(      ( )  
 

 
 (        ( ))  

  ( )

  
)  ̇    ̇    (9) 

where   is defined as above and represents the general thermodynamic force conjugate to  . For 

the Helmholtz free energy by equation (2), the explicit form of   is: 

 (   )        ( )  
 

 
 (        ( ))  

  ( )

  
  (10) 

we consider uniaxial tension so    ( )    . To complete the model, the rate-independent 

dissipation potential is formulated as follows: 

 ( ̇)     ̇  with      . (11) 

It is necessary to establish the conditions under which martensitic phase transformations, both 

forward and reverse, occur. The constitutive model provided posits that these transformations 

happen when the thermodynamic force   attains a critical threshold. This assumption must be 

incorporated to ensure that the Clausius-Planck inequality holds true for all potential 

thermomechanical trajectories. 

When the forward martensitic transformation occurs,  ̇ takes positive values because austenite is 

transforming into martensite. Hence, for the Clausius-Planck inequality (9) to hold,   must be 

positive. Thus, during the forward transformation  ̇   , the function   reaches the threshold 

value: 

  
  ( ̇)

  ̇ 
    (12) 

where 

     
     

 

(13) 
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and   
   is the stress that starts the phase transformation from austenite to martensite. 

Conversely, during the reverse martensitic transformation,  ̇  is negative as martensite reverts to 

austenite. For the Clausius-Planck inequality (9) to be satisfied,   must be negative. Therefore, 

during the reverse transformation  ̇   , the function   becomes: 

   
  ( ̇)

  ̇ 
      (14) 

where 

     
     

 

(15) 

and   
   is the stress that starts the phase transformation from martensite to austenite. Finally, 

when the SMA is in a state where no phase transformation occurs,  ̇   , meaning   remains 

constant. In this scenario, the Clausius-Planck inequality is automatically satisfied because 

  ̇   . The criteria for both forward and reverse martensitic transformations can be 

encapsulated by introducing a transformation function  (   )  such that: 

{
 (   )                     (   ) ̇                        ̇    

 (   )                  (   ) ̇                        ̇    
 (16) 

Substituting relation (10) into equations (16) results in two quadratic equations: 

   
                             ̇    

   
                             ̇    

(17) 

(18) 

The coefficients for these quadratic equations are determined as follows: 
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The solutions can be found by solving quadratic equations (17) and (18). 

3.2. Dynamic equations formulation of a sag stay cable 

We begin by examining a cable connecting two points,   and  , separated by a distance   

and forming an angle   with the horizontal axis. Considering only the cable's self-weight, this 

structure remains stable in the plane, with the orthogonal reference system in this plane denoted 

as    . In this plane, the cable can oscillate along the    direction (Figure 2a), while out-of-

plane oscillations occur along the    direction, forming the orthogonal frame      [18, 19]. 

The cable’s free vibration modes include the first, second, and third modes, illustrated in Figure 
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2b. The SMA damper, installed at position xc, generates a force    applied to the cable, helping 

to control and reduce vibrations under various load conditions. 

 

 

Figure 2. a) Schematic diagram of an inclined stay cable and b) Vibration modes of the cable 

The partial differential equations governing this equilibrium, while accounting for the influence 

of an SMA damper, can be expressed as follows [20]: 
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Where   is the static cable tension,   is is the dynamic cable tension,   is time, δ is the Dirac 

delta function, and       are the displacement components of the cable in the     and   

directions, respectively, measured from the equilibrium position of the static cable.       and    

are the distributed dynamic external loads per unit length in the     and   directions, and      
represents the force exerted by the damper on the cable at position     . The Dirac delta function 

 (      ) is used to model the pointwise application of damper forces. The parameter   

indicates the total number of SMA dampers installed along the cable. This formulation is 

consistent with previous studies on coupled dynamic systems with discrete nonlinear damping 

mechanisms. 

To derive the governing equation, the original non-linear equations are simplified using the 

following key assumptions: the cable's transverse frequency is lower than its longitudinal 

frequency, vibrations are limited to the   -plane with negligible movement in the  -direction, 

the static cable shape is approximated as a parabola, and the sag-to-span ratio is small enough to 

be ignored. These assumptions were proposed in the research by Soltane et al [21]. The study 

focuses on the free vibration response of the cable, as initial impulses from wind-induced 

excitations lead to natural mode vibrations.  

a) b) 
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As the analysis is restricted to transverse vibrations, we retain only the second equation from the 

equilibrium system (25), which governs the displacement component   in the  -direction. The 

transverse deflection can be represented by a finite sum of modes, expressed as: 

  ∑  ( )  ( )

 

   

 (26) 

Here,   ( ) represents the dimensionless mode coefficients, and   ( ) is a set of mode shape 

functions assumed to be continuous and satisfying the geometric boundary conditions   ( )  
  ( )   . To calculate the damping effectiveness of the SMA damper, we assume   ( )  

   (
   

 
) with   is the mode number. Based on the assumptions in reference [21], we focus on 

the second equation in system (25), which governs the transverse vibration in the  -direction and 

includes the localized forces exerted by the SMA dampers. By multiplying both sides of the 

equation by   ( )  and integrating over the length of the cable from 0 to  , we obtain a general 

form equation: 
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Substituting Equation (26) into Equation (27), we obtain: 
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Due to orthogonality, the inner products∫   ( )
 

 
  ( ) and ∫   

  ( )
 

 
  ( ) vanish for      

resulting in a decoupled equation for each mode  . After simplification, we obtain: 
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This expression is then simplified by integrating by parts and applying the boundary conditions. 

Consequently, the modal coefficients   ( ) must satisfy the following second-order differential 

equation: 

    ̈ ( )       ( )        ( )  (  ) (30) 

where: 

{
 
 
 
 
 

 
 
 
 
    

  

 
(
      

 
)
 

                                                                                                        

     ∫   ( )  ( )
 

 

    
 

 
                                                                                 

      ∫   
  ( )  ( )     ∫   ( )  ∫   ( )  

 

 

 
     

  
   

   

    

 

 

 

 

    ∫   (   )  ( )  
 

 

                                                                                                 

  (  )     (
    

 
)                                                                                                          

 (31) 

Equation (30) captures the essential dynamics of the system, including the mass, stiffness, and 

damping effects of the cable, as well as the external forces and the influence of the SMA 

damper. The system of dynamical equations is decoupled in all terms except for the term   , 

which is introduced by the presence of the SMA damper. This SMA damper introduces non-

linearity into the otherwise linear cable-damper system. To compute the dynamic response of the 

cable, the Newmark numerical method is used. The damping force    will clearly depend on the 

constitutive behavior of the SMA. 

4. OPTIMIZATION OF THE CROSS-SECTIONAL AREA, LENGTH OF SMA 

WIRES, AND POSITION OF THE SMA DAMPER 

To determine the optimal parameters for the Shape Memory Alloy (SMA), such as the 

cross-sectional area and the length of the wires, a range of criteria can be applied to ensure 

maximum efficiency. One of the most widely adopted and effective design approaches involves 

the use of energy methods [18, 21]. The fundamental principle behind this method is that the 

SMA reaches its optimal performance when it is capable of dissipating the maximum possible 

amount of the total energy within the structure. By focusing on energy dissipation, this approach 

ensures that the SMA can effectively reduce vibrations and enhance structural stability. The 

energy balance of the equilibrium equation (30) for a single mode can be defined as follows: 

  ( )    ( )    ( )    ( ) (32) 

Where   ( )  
 

 
    ̇ 

 ( ) is the kinetic energy of the stay cable,   ( )  
 

 
     

 ( ) is the 

elastic energy of the stay cable,   ( )  ∫    ( ) ̇ ( )
 

 
   is the input energy, and   ( )  

   ( )     ( ) is the energy associated with the SMA device, which is a combination of two 

terms: the elastic energy    ( ) and the dissipative energy    ( ). The elastic energy 

   ( ) represents the energy stored in the SMA due to its deformation, similar to the elastic 

energy in the cable. On the other hand, the dissipative energy    ( ) is related to the energy lost 

in the system due to hysteresis, which is a measure of the energy dissipation capability of the 
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SMA. The dissipative term is particularly important because it highlights the SMA's ability to 

absorb and dissipate energy, reducing the oscillations and enhancing the stability of the 

structure. To maximize the damping capacity, the dissipative energy must be at its maximum, 

which results in the maximum force exerted by the SMA. The force exerted by the SMA is as 

follows: 

  ( )        
 (

 (    )

    
       ( )) (33) 

Here, E is the modulus of elasticity,  (    ) the cable transverse displacement at location   , 

and      and      are the length and the wire radius of SMA, respectively. According to 

Equation (33), in order for    to reach its maximum value, the term inside the parentheses must 

also be maximized. In that case,    , leading to   
 (    )

    
      . Therefore, the condition 

for optimizing the SMA device length is defined by the relationship: 

       
   (34) 

where   
   is the strain corresponding to the stress at the end of the martensite transformation. 

Consequently, the optimal length of the SMA device is determined by: 

    
   

 
|    (    )|

    
 (35) 

Moreover, based on Equation (33), the radius of the SMA wire in the SMA device should be 

selected as large as possible. 

To examine the damping effectiveness of the SMA device in all three natural vibration modes, 

the geometry and properties of the stay cable are given in Table 1. 

Table 1. Geometric and properties of the stay cable model [21] 

Parameter Symbol value unit 

Cable length   55.4 m 

Mass per unit length   44 Kg/m 

Inclination angle   16.5 deg 

Elastic modulus    19e10      

Cross-sectional area    55.5e-4    

Static tension   4313.5e3   

The formula commonly used to calculate the deflection of a stay cable is:   
        

  
 

In the case of the Rades-La Goulette cable-stayed bridge [21], the tension in the stay cable is 

         , which results in a deflection of           . It is clear that when the cable is 

fitted with a damper, its oscillation amplitude is reduced compared to when it is not equipped. 

Thus,          . To calculate the optimal length of the SMA damper, we fixed the installation 

position of the damper at     . The strain   
   and the material properties of the SMA are 

provided in Table 2. The maximum transverse displacement     (    )  is selected as       , 

ensuring it is less than the transverse displacement at the mid-span of the cable. The diameter of 

the SMA wire is chosen to be           . Based on these parameters, the optimal length of 

the SMA is determined using Equation (35) to be     
   

      m. 
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Table 2. Material parameters [22]. 

   

(Mpa) 

   

(   ) 

  
   

(   ) 

  
   

(   ) 

  

(   ) 

  
   

( ) 

    

(   ) 

   
(   ) 

   
(   ) 

   

( ) 

40000 20000 200 200 20000 6.5 1 7 14 0.2 5 

With the above parameters and the calculated optimal length, the damping performance of 

the SMA device is demonstrated in Figure 3, which presents the dynamic response of the cable 

under its first three natural vibration modes. Specifically, Figure 3 illustrates the dynamic 

response of the cable in its first three vibration modes, represented by the transverse 

displacement  (    ) over time and the corresponding force response    as a function of 
 (    ). The left plot shows the variation of the transverse displacement across the three 

vibration modes over time. In the first vibration mode, the amplitude decays more slowly than in 

the second and third modes, indicating higher energy dissipation in the higher modes. Because 

the frequency of mode 3 exceeds that of mode 2, which in turn surpasses mode 1, faster energy 

dissipation occurs. This observation is reinforced by the right plot, which depicts the relationship 

between force    and displacement (    ). The first mode has the lowest force, while the second 

mode, and especially the third mode, exhibit significantly higher forces, suggesting that the 

SMA damper generates stronger force responses in the higher vibration modes. This reflects the 

nonlinear characteristics of the SMA damper, where the force response level varies according to 

each vibration mode. 

  

Figure 3. The dynamic response of the cable’s three vibration modes 

To further emphasize the advantages of the proposed two-floor SMA damper, a comparison is 

made with the traditional Tuned Mass Damper (TMD), a well established solution for vibration 

control in cable-stayed bridges. In the study by Mekki [18], the TMD was installed at the mid-

span of the cable and optimized using a mass ratio of 5% to target a specific natural mode. The 

time-history responses, illustrated in Figures 4 to 6, demonstrate that the SMA damper 

consistently provides faster attenuation of vibration amplitudes and shorter stabilization times 

across all modes. 
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Figure 4. Comparison between the SMA 

damper and the TMD in controlling the free 

vibration of the stay cable in the first mode. 

Figure 5. Comparison between the SMA 

damper and the TMD in controlling the free 

vibration of the stay cable in the second mode. 

 

Figure 6. Comparison between the SMA damper and the TMD in controlling the free 

vibration of the stay cable in the third mode. 

 

Quantitatively, the maximum displacement observed with the SMA damper is reduced by 

approximately 50 – 60 % compared to the TMD across the modes, and the time to reach stable 

oscillation is notably shorter. For instance, in the first mode, the SMA-controlled cable stabilizes 

in under 1.5 seconds, while the TMD requires more time. This indicates a higher effective 

damping capacity of the SMA, which stems from its intrinsic hysteresis and phase 

transformation behavior. This trend continues in the higher modes. In the second mode (Figure 

5), the SMA damper achieves faster suppression of the oscillation envelope, with a significant 

reduction in peak amplitude and a quicker transition to steady-state response than the TMD. In 

the third mode (Figure 6), where the excitation frequency is highest, the SMA damper continues 

to exhibit superior damping performance, maintaining a compact and stable vibration profile 

while the TMD response remains more oscillatory and prolonged. One possible advantage of the 
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TMD under free vibration is its ability to more effectively attenuate small-amplitude oscillations. 

These results confirm that the proposed SMA damper consistently provides robust vibration 

control in each individual mode, outperforming the traditional TMD not only in damping 

intensity but also in response speed and adaptability across different independently examined 

natural modes. 

In addition to evaluating performance, the influence of design parameters on damper efficiency 

is also examined. The relationship between the SMA diameter, damper installation position, and 

optimal force    is shown in Figure 7. 

  

  

Figure 7. Relationship between diameter, position and force   : a) First mode, b) Second mode,  

c) Third mode and d) Combine three modes. 

Figure 7 illustrates the relationship between the SMA diameter (    ), the damper 

installation position (   ⁄ ), and the optimal force        across three vibration modes of the 

cable, along with a combined plot for all three modes. In the first mode (Figure 7a),        

increases significantly as      increases and the installation position moves closer to mid-span, 

indicating that the best damping effect is achieved when the damper is placed at the mid-span 

with a larger SMA diameter. For the second mode (Figure 7b),        also increases with a larger 

     and reaches optimal damping performance when the damper is installed near a quarter-

span position, suggesting that this is the ideal location for the second mode oscillations. In the 

b) 

c) 

a) 

d) 
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third mode (Figure 7c),        similarly rises with an increasing     , with the best damping 

effect observed when the damper is installed at either a sixth-span or mid-span position. For 

each vibration mode, the plots enable engineers to efficiently calculate the optimal damping 

force required to reduce vibrations in the cable-stayed bridge cables, using the available 

parameters. The combined plot (Figure 7d) incorporates the effects of all three oscillation 

modes, showing regions where        reaches its maximum. This diagram also indicates that the 

maximum damping force can be easily determined from parameters      and    ⁄  to enhance 

the damper's vibration reduction capability in cases where the cable is subjected to all three 

vibration modes. This insight is crucial for the practical installation of dampers on stay cables, 

helping to optimize costs, ensure effective damping, and enhance the longevity of bridge 

structures. 

5. CONCLUSIONS 

This study presented a passive two-floor damper based on the superelastic effect of SMA to 

control vibrations in cable-stayed bridge systems. The two-floor damper was designed to 

maximize energy dissipation and ensure full deformation recovery after each vibration cycle, 

thereby enhancing cable stability and extending the service life of the bridge. Additionally, we 

proposed a simplified constitutive model that accurately simulates the superelastic effect of 

SMA, meeting the requirements for structural engineering applications. Using this model, we 

derived the dynamic equations to describe the cable's response when the damper is applied 

across different natural vibration modes. The results indicate that the two-floor SMA damper 

achieves high effectiveness in reducing cable oscillation amplitudes, outperforming a 

conventional tuned mass damper in both peak displacement reduction and stabilization time, 

particularly in higher vibration modes where energy dissipation is crucial. 

We also optimized the length and diameter of the SMA wires to achieve maximum energy 

dissipation and developed charts illustrating the damping efficiency of the two-floor SMA 

damper according to installation position and wire diameter across three vibration modes of the 

cable in cable-stayed bridges. These charts assist in selecting the optimal installation position in 

practice to ensure high damping efficiency, while also providing feasible design guidance for 

real-world applications. 

The two-floor damper concept with a simplified constitutive model not only optimizes 

damping performance but also simplifies the design and construction process, ensuring stability 

and durability for cable-stayed bridges. Future studies can focus on refining the configuration of 

the two-floor damper to further enhance vibration control, particularly for large bridge systems 

subjected to complex dynamic loads. 
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