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Abstract. Generating captions for images is a key endeavour that connects visual processing and 

linguistic analysis. However, techniques relying on long short-term memory (LSTM) units and 

conventional attention systems face restrictions in managing intricate interconnections and 

supporting effective parallel processing. Additionally, precisely depicting elements absent from 

the training data presents a significant challenge. To overcome these obstacles, the present 

research introduces an innovative framework for image description, employing a Transformer 

architecture augmented by cross-attention processes and semantic insights sourced from 

ConceptNet. This setup follows an encoder-decoder paradigm, where the encoder derives 

features from object areas and assembles a graph of associations to depict the visual scene. At 

the same time, the decoder merges visual and semantic aspects through cross-attention to 

produce captions that are both accurate and varied. The inclusion of ConceptNet-derived 

knowledge enhances precision, particularly when handling items not encountered during 

training. Tests conducted on the standard MS COCO dataset reveal that this approach 

outperforms recent state-of-the-art approaches. Moreover, the semantic integration strategy 

outlined here can be readily adapted to alternative image captioning systems. 

Keywords: Image captioning, cross-attention mechanism, transformer, ConceptNet knowledge base, 

relationship graph. 

Classification numbers: 4.7.4, 4.8.3 

1. INTRODUCTION 

Creating captions for images ranks among the crucial and demanding activities in artificial 

intelligence. This involves a multi-modal learning procedure that integrates visual computing 

with linguistic analysis. The goal is to produce significant text-based narratives derived from 

given images [1]. The process of automatically crafting precise and semantically abundant 
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descriptions from visuals necessitates a deep comprehension of the image's components, coupled 

with the model's proficiency in identifying semantic connections among entities, surroundings, 

and activities shown in the visual [2]. Furthermore, image captioning has numerous practical 

applications, such as image captioning systems for assisting visually impaired individuals in 

perceiving their surroundings [3], medical image captioning to aid doctors in diagnosing 

diseases [4], and human-robot interaction [5], image captioning for explainable visual question 

Answering [6]… 

At present, most approaches to creating captions for images depend on an encoder-decoder 

structure that incorporates attention mechanisms [1]. In this setup, the encoder processes the 

input image to create vectors with a fixed length, which are later utilised by the decoder-usually 

a long short-term memory (LSTM) system-to craft descriptions based on those extracted 

elements [7 - 10]. Often, pre-trained Convolutional Neural Networks (CNNs) or tools for object 

identification, such as Faster R-CNN and YOLO, function as encoders to extract features at the 

region level from the imagery [7, 11]. That said, employing CNNs comes with drawbacks 

stemming from the bottleneck issue, in which data from the entire image is compressed into a 

vector of predetermined size. For object detection frameworks, the downside is that features 

from specific regions fail to encompass the whole visual content. As a result, it becomes 

essential to map out the interconnections among these elements. By doing so, the encoder can 

convey a holistic depiction of the image's details, serving as enhanced input for the decoder and 

thereby improving the precision of the resulting captions. 

Building on the limitations mentioned above, several research groups have published image 

captioning works that leverage the relationships between objects in the image, demonstrating 

their effectiveness [12 - 15]. These works construct graphs to represent the image, which 

supplements the encoder with additional information to fully comprehend the image content, 

thereby serving as input to the decoder-an LSTM network with attention mechanisms—for 

caption generation. While decoders using LSTM networks with attention mechanisms have 

become popular in recent years for image captioning tasks, they still face challenges such as 

slow training times due to sequential computation and issues like vanishing or exploding 

gradients. Inspired by the success of the transformer model [16] in natural language processing, 

current image captioning models are gradually replacing LSTM with transformer in the 

decoding stage, owing to its parallelization capabilities and superior performance. Notably, the 

attention mechanisms in transformer (self-attention, cross-attention) have demonstrated superior 

ability in learning the context of related objects compared to traditional attention mechanisms. 

Moreover, recent image captioning methods have been trained on datasets consisting of 

paired image-caption examples. However, these datasets typically contain only a tiny number of 

captions (usually between 1 to 5 captions per image). As a result, these models need more 

information to describe new objects not present in the training set or aspects not explicitly 

represented in the image. This issue can be addressed by integrating information from external 

data sources into the caption generation process. Several studies have leveraged external data 

beyond the training dataset, such as extracting object knowledge from object recognition 

datasets and external textual data to generate captions for novel object [17], using knowledge 

graphs to enhance image captioning performance [18], and employing semantic representations 

(e.g., using the ConceptNet knowledge base) along with attention mechanisms for image 

captioning [19]. Therefore, utilizing external knowledge beyond the training dataset, specifically 

the ConceptNet knowledge base, to improve image captioning models' performance is necessary, 

feasible, and effective. 
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Therefore, this study proposes a novel approach named RGTranCNet, which is a 

combination of three key components: RG stands for Relationship Graph, Tran refers to the 

transformer decoder, and CNet represents the integration of semantic knowledge from 

ConceptNet. In this model, (i) the object-region features and the image’s relational graph are 

unified within a single cross-attention block rather than employing separate dual attention, 

thereby enhancing attention efficiency and reducing complexity; (ii) external knowledge from 

ConceptNet is seamlessly integrated into the decoding process to refine the generated captions, 

allowing more effective handling of objects absent from the training set-a standard limitation in 

current image captioning models-and thus improving generalizability and enriching the semantic 

content of the captions; and (iii) only the decoder is trained, while the modules responsible for 

extracting object-region features, creating and representing the relational graph, and retrieving 

semantic knowledge from ConceptNet remain fixed. This strategy significantly reduces training 

costs yet maintains accuracy and scalability. 

The main contributions of this paper include: 

 Improving image captioning performance using a transformer decoder as the language 

model in place of LSTM networks and employing cross-attention mechanisms instead of 

traditional attention mechanisms to integrate multimodal information between the 

encoder and decoder. 

 Integrating semantic knowledge from the ConceptNet knowledge base into the decoder 

to leverage external knowledge beyond the training dataset, thereby enhancing the 

accuracy of the generated captions, particularly for novel objects. This approach can be 

easily applied to other image captioning models. 

 Extensive experiments on the benchmark MS COCO dataset demonstrate that the 

proposed model achieves higher accuracy than previous methods (including LSTM-

based ones) across most evaluation metrics while maintaining low training costs by 

training only the decoder. 

The previous portion examines significant challenges in producing captions for images by 

incorporating cross-attention approaches and semantic components. The remaining parts of the 

article are organised in the manner described here: Section 2 examines pertinent research and 

underscores ongoing obstacles within the domain. Section 3 offers an in-depth overview of the 

proposed technique. Section 4 details the experimental setups and presents the results obtained 

from evaluations. Lastly, Section 5 concludes the research and proposes potential avenues for 

future exploration. 

2. RELATED WORKS 

Many recent image captioning works have been published based on the encoder-decoder 

framework with attention mechanisms, employing pre-trained CNN networks, object detection 

models, and models that predict relationships between objects in the image, as well as utilizing 

external data sources beyond the training dataset, such as: 

Patwari et al. [20] introduced a method for describing images that relies on an encoder-

decoder structure, employing a pre-trained Inception-v3 convolutional neural network to derive 

visual features. A GRU-equipped decoder, augmented by an attention system, then produces the 

descriptions. This approach yielded encouraging results on the MS COCO dataset, as reflected in 

its BLEU-1 through BLEU-4 metrics. However, it is still hampered by its heavy reliance on pre-

trained CNNs for extracting visual elements, which leads to challenges in identifying fine-
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grained object specifics and the connections between them, ultimately hindering a more 

profound grasp of the image's semantic essence. 

Xie et al. [21] presented a framework designed to enhance the effectiveness of image 

description generation by combining bidirectional LSTM architectures and attention systems. 

Their methodology involves deriving features from object areas in the input visuals via Faster R-

CNN, followed by their handling in a Bi-LSTM setup to produce explanatory text. This system 

underwent experimental testing on the Flickr30k and MS COCO benchmarks, where it exhibited 

better outcomes than standard references and various contemporary works. That said, a 

significant shortcoming lies in its narrow focus on isolating object regions, overlooking the 

interconnections between them—a factor that could enhance the image's semantic depiction and 

improve the precision of the generated descriptions. 

Chen et al. [22] proposed a technique that generates an abstract scene graph from authentic 

captions to guide the production of image captions, offering increased variety and better 

alignment with user preferences. Drawing from this foundation, Yan and their team [23] 

advanced the system by incorporating transformer elements in conjunction with a two-level 

LSTM design to enhance smoothness and consistency. Within this setup, the primary LSTM 

layer integrates inputs across modalities, merging visual and linguistic signals, while the 

secondary layer constructs the captions. The transformer component oversees the weighting of 

diverse feature types during the decoding stage. Although these works adeptly utilise abstract 

scene depictions obtained from labelled captions to elevate the quality of descriptions, they both 

suffer from a shared limitation: the inadequate exploitation of the image's intrinsic elements, 

especially the semantic interconnections among objects. This deficiency leads to their somewhat 

inferior outcomes on multiple conventional evaluation measures. 

Ramos et al. [24] integrated the ConvNeXt architecture with a Long Short-Term Memory 

(LSTM) system, augmented by a visual attention component, to boost the effectiveness of 

generating image descriptions. This framework underwent testing on the MS COCO dataset, 

where its performance was measured via the BLEU score, revealing greater precision relative to 

approaches that employ pre-trained CNNs as encoders. While ConvNeXt demonstrated 

advantages over established pre-trained CNN frameworks, it nonetheless encounters difficulties 

in thoroughly grasping the interconnections among elements within the images. The LSTM 

element also presents shortcomings, as noted in prior discussions. Moreover, assessing outcomes 

based exclusively on the BLEU metric falls short of providing a thorough analysis of the model's 

strengths, as supplementary evaluation criteria are necessary to encompass the diverse 

dimensions of the image description generation task. 

Thinh et al. [12] introduced an image captioning framework that incorporates both object 

detection and relationship prediction to capture the semantic structure of an image. Initially, 

objects are identified using a detection model enhanced with a graph convolutional network, 

followed by the inference of inter-object relationships informed by contextual cues and 

predefined relational knowledge. These relationships are then categorised to form a structured 

graph that semantically represents the image. To support the caption generation process, a dual-

attention mechanism is employed, allowing the model to selectively attend to both visual object 

regions and corresponding nodes in the relationship graph. Caption generation is carried out by 

an LSTM network equipped with this dual-attention design, utilising both the extracted image 

features and reference captions. Experimental evaluation on the MS COCO dataset confirms the 

model’s effectiveness. Nonetheless, the approach encounters limitations: the two independent 

attention modules within the dual-attention design do not sufficiently integrate visual and 

semantic features, and the reliance on LSTM networks introduces sequential processing 
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constraints. These limitations suggest the need to replace the LSTM component with a 

transformer architecture and adopt a cross-attention mechanism to align heterogeneous features 

better and improve captioning performance. 

Wang et al. [25] developed a system for generating image descriptions using a transformer 

architecture, aiming to address the shortcomings inherent in CNN-LSTM configurations. Yang 

et al. [26] presented a transformer-oriented framework dedicated to context detection, aimed at 

boosting the precision of generated captions. Li et al. [27] suggested integrating a transformer 

with supplementary external data to capitalise on inter-object connections, thereby elevating the 

quality of image captioning results. These techniques were subjected to empirical testing on the 

MS COCO dataset and demonstrated their efficacy across typical performance indicators for 

image description tasks, including BLEU, METEOR, ROUGE, and CIDEr. 

Zhou et al. [18] suggested an approach to boost the precision of generating image 

descriptions by utilising data from the ConceptNet repository. They incorporated semantic 

insights associated with image elements into the encoder section of the NIC framework for 

captioning [7], achieving improved outcomes over methods that rely solely on visual 

characteristics. That said, a notable drawback of this technique is that incorporating an overload 

of input data might create interference in the training phase, ultimately diminishing the model's 

overall efficiency. Hafeth and their team [19] presented a semantic attention-oriented network 

designed to embed supplementary knowledge (derived from ConceptNet) into the transformer's 

attention components, which in turn enhances the performance of image description generation. 

From the survey and analysis of related works, it is evident that the image captioning 

problem, mainly using deep learning networks such as transformers, has garnered significant 

attention from the research community and has proven effective. Moreover, integrating semantic 

knowledge from external data sources beyond the training dataset is also feasible and practical. 

Building on the foundation of existing research and addressing the limitations of previously 

published methods, the proposed image captioning approach utilizes a relationship graph, a 

transformer decoder with cross-attention mechanisms, and the integration of semantic 

knowledge from ConceptNet into the decoder, aiming to improve accuracy and enhance the 

model's generalization capability. 

3. PROPOSED METHOD 

 

Figure 1. Architecture of the image captioning model integrating semantic knowledge and cross-attention 

mechanism. 
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In this study, we introduce an image captioning model built upon the encoder-decoder 

architecture, as illustrated in Figure 1. The model comprises three core modules: (i) an image 

encoder responsible for learning visual representations from the input image; (ii) a semantic 

knowledge extractor that retrieves relevant object-level semantics from the ConceptNet 

knowledge base; and (iii) a Transformer-based decoder that generates image captions by 

utilizing the visual features from (i) in conjunction with the semantic information from (ii), 

thereby improving caption quality and semantic alignment. 

3.1. Image Encoder 

The image encoder comprises two main processes: (3.1.1) identifying object regions within 

the image and extracting their visual features, and (3.1.2) generating and embedding a 

relationship graph that captures interactions among the detected objects. These two types of 

features are integrated through a cross-attention mechanism, which provides the contextual input 

for the decoder to generate descriptive captions. 

3.1.1. Detecting and extracting features from object regions 

Pre-trained object detection frameworks, including SSD, Faster R-CNN, and YOLO, 

trained on extensive datasets, have achieved impressive results in computer vision applications 

like image captioning. However, they often face challenges with visuals featuring multiple 

elements or complicated layouts. Additionally, these systems emphasise individual object 

attributes while overlooking connections between them, potentially causing detection errors in 

specific scenarios. To mitigate these issues, our previous study [12] introduced ODwGCN, a 

two-phase enhancement method. The initial phase applies a Graph Convolutional Network 

(GCN) to identify co-occurrence patterns among image objects. The subsequent phase adjusts 

outputs from pre-trained detectors using factors based on those patterns. Testing on the MS 

COCO dataset revealed gains of 1.2 to 2.2 points in mAP and 0.9 to 3.2 points in mAP@0.5 

compared to standard benchmarks. 

In the current study, ODwGCN is utilised to identify object regions. The visual features of 

these regions are extracted using ResNet101, yielding a set of feature vectors denoted as    for a 

given input image  . These features are later integrated with the embedding of the relationship 

graph and provided as input to the decoder for caption generation. 

3.1.2. Constructing and representing the relationship graph of the image 

A relational graph provides a robust framework for depicting complex interdependencies 

between objects, portraying them as vertices and their mutual connections as oriented links. 

According to the definition in [12], the image's relational graph—termed R-Graph—is officially 

represented as        , in which: 

 Vertex set                 
̅̅ ̅̅ ̅̅ ̅  corresponds to the detected object regions in the 

image. 

 Edge set                               
̅̅ ̅̅ ̅̅ ̅      represents the directed 

relationships between object pairs. 

Here,   denotes the set of identified object regions,    is the number of such regions, and 

  is the predefined set of relationships derived from the training dataset. 

3.1.2.1. Creating the relationship graph 

In our prior research [12], we developed the VRP+RK model for predicting various 

relationship types, leveraging relational insights from entity pairs in the training data. Framed as 

mailto:mAP@0.5
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a multi-class classification challenge, it takes as input a duo of object regions plus their semantic 

tags, outputting one of      options—encompassing    specified relations plus a 

"            " class. 

Once the VRP+RK model is trained on the Visual Genome dataset, it is used in conjunction 

with ODwGCN to construct the relationship graph for a given input image. Initially, the    

detected object regions are combined to form          object pairs. For each pair, the 

relationship classifier produces a probability distribution over the      categories. If the 

predicted probability for the "none relation" is below a specified threshold  , an edge is 

established between the corresponding nodes    and   , labelled with the most probable 

relationship. An illustrative example of the resulting relationship graph   is depicted in Figure 

2(c), where the vertex set is                         , and the edge set is     
                                          . 

After training VRP+RK on the Visual Genome dataset, it collaborates with ODwGCN to 

build the relational graph for an input image. This starts by forming          pairs from the 

   detected regions. The classifier then generates a probability spread across the      classes 

for each pair; if the "              " likelihood falls below threshold  , a directed edge links 

nodes    and   , tagged with the top-probability relation. For instance, Figure 2(c) shows graph 

G with vertices                          and edges                           
                    . 

 

Figure 2. Creating a relationship graph from an input image: a) the input image, b) the result after 

applying the improved object detection model ODwGCN, and c) the relationship graph obtained after 

predicting the relationships between the objects. 

3.1.2.2. Representation the relationship graph  

Although the relationship graph         provides a comprehensive and accurate 

representation of image content, its heterogeneous structure poses challenges for integration into 

most learning algorithms that rely on semantic information [26]. To address this, it becomes 

necessary to convert the graph into a linearised format that retains the original semantic structure 

while making it compatible with deep learning models, particularly as input to the encoder in a 

language generation framework. To further exploit the semantic richness of object class labels 

and their interrelations-rather than relying solely on region-level features and raw graph 

representations as done in prior work-we proposed in [12] a transformation of the relationship 

graph into an extended form, referred to as the enriched relationship graph           , or R-

Graph*. This transformed graph is defined as follows: 

 Vertex set       
           

̅̅ ̅̅ ̅̅   where   includes two types of nodes: object class 

labels and relationship (predicate) labels. 
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 Edge set    {   
                 

̅̅ ̅̅ ̅̅     } is constructed using the rule: for each edge 

                 , two directed edges are created—one from    to    , and another from 

    to   . 

This formulation preserves the structural semantics of the original graph while making it 

more amenable to language-oriented neural architectures. For example, the relationship graph 

        in Figure 2(c) has objects:                     ; relationships between the objects: 

               ,                            will be converted into the graph    
        consisting of 5 vertices and 4 edges as shown in Figure 3. 

To learn representations for the vertices in the extended relationship graph (R-Graph*), we 

employ the GraphSAGE framework [28] in conjunction with an unsupervised training approach. 

The model is optimised using a contrastive loss function that encourages embeddings of 

neighbouring nodes to be more similar than those of non-neighbours. The process of generating 

vertex embeddings involves the following steps: 

 Step 1: Utilize the word2vec (GloVe) technique to extract the feature vector of the vertex 

labels. 

 Step 2: Divide the neighbouring vertices into two categories: the incoming set ( -   ), 

which includes nodes directing toward  , and the outgoing set ( +   ), which includes 

nodes that   directs toward. 

 Step 3: Combine the information from ( -   ) and ( +   ) with the current information 

of node  , creating the vectors    
    

 and    
    

. 

 Step 4: Concatenate    
    

 and    
    

 to create the final representation of vertex  ,   
  

    
    

    
    

       .. 

 Step 5: Repeat steps 2 to 4    times to obtain the final representation of vertex  . 

Where,    is number of layers of GCN,   
   

 is the hidden state of node   at layer   of the 

GCN. 

Thus, for the relationship graph of an input image  , the resulting embedding set    consists 

of the feature vectors of the vertices in the R-Graph*. 

 

Figure 3. Result of converting the relationship graph R-Graph in Figure 2(c) into the extended 

relationship graph R-Graph* 
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3.2. Semantic knowledge extractor 

ConceptNet is a multilingual knowledge base describing words and phrases commonly 

used by humans and their typical relationships. The knowledge in ConceptNet is collected from 

various sources, including community-contributed resources such as Wiktionary and Open Mind 

Common Sense, expert-curated resources like WordNet and JMDict, and many other open data 

sources [29]. This creates a knowledge base that links concepts through semantic relationships 

such as "IsA", "PartOf", "UsedFor", and many others. These relationships enable the model to 

understand better the context and semantic links between words and phrases. As a result, it aids 

artificial intelligence systems in understanding context, reasoning, and interacting with humans. 

In this study, the ConceptNet knowledge base   is defined as a graph as follows: 

Definition 1. Graph CK-Graph           is a directed graph consisting of: 

 Vertex set                
̅̅ ̅̅ ̅̅  ,    is the number of concepts in ConceptNet, 

 Edge set                           
̅̅ ̅̅ ̅̅      , 

 Weight set                 
̅̅ ̅̅ ̅̅ ̅ ,    is the number of edges in  . 

To integrate semantic knowledge from ConceptNet into the caption generation process to 
improve accuracy, particularly in describing novel objects not present in the training dataset, we 

first represent ConceptNet as a knowledge graph          , as defined in Definition 1. 

Then, object class labels in the image are used to query semantically similar knowledge from 

this graph. Figure 4 illustrates the result of querying information for the object "laptop" from  . 

Notably, each object corresponds to a probability value, representing the degree of correlation 

with the queried term. 

In this paper, the top-  related objects for each detected object in the image are used to 

enhance the information for the decoder during the caption generation process. This set, denoted 

as  , is utilized when generating the next word of the decoder. The process of extracting 

knowledge for the related objects is described in Algorithm 1. 

Algorithm 1. ExtractRelatedObjectCNet       

Input: The object label set of the image  ,                 
 , ConceptNet knowledge base   

Output: The list of related objects and their corresponding weights   

Begin 

# Initialize the empty set O 

    

                 

 # Retrieve the edge set      from ConceptNet   

                      

 # The set of related objects of    

                          

 # Update   

        

end 

End 

Algorithm 1 performs the extraction of related objects from the ConceptNet knowledge 

base based on the class labels of objects in the image. The algorithm begins by initializing an 

empty set to store the related objects along with their corresponding weights. For each object 
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class label in the image, the algorithm retrieves edges from ConceptNet that are sourced from 

that label, thus obtaining the corresponding set of edges. The related objects of the class label are 

identified from these edges, and the result set is updated by incorporating them into the related 

object set. The final output of the algorithm is a list of related objects along with their weights. 

Thus, given an input image   containing the set of class labels of the detected objects in the 

image   , Algorithm 1 produces the result, the semantic knowledge of the related objects   , 

comprising the set of objects and their corresponding weight values. 

 

Figure 4. Illustration of knowledge extraction from ConceptNet for the object class label "laptop". 

3.3. Language Decoder 

In this paper, the decoder component of the transformer is utilized as a language model for 

image caption generation. The features extracted from the image in the Encoder, including 

object region features and embeddings of the relational graph, are combined and input into the 

decoder through a cross-attention mechanism to train the caption generation model. Semantic 

knowledge extracted from ConceptNet is also integrated to enhance the model's performance. 

The training and caption generation process of the Encoder is described through two algorithms: 

Algorithm 2, which trains the transformer decoder by integrating semantic knowledge to create a 

model for image caption generation, and Algorithm 3, which generates captions for input images 

using the model trained in Algorithm 2. 

To focus on two main improvements: (1) the multi-head cross-attention mechanism, which 

integrates information from object region features and relational graph embeddings, and (2) the 

integration of semantic knowledge from ConceptNet to adjust the predicted probabilities during 

generation, thereby aiding the model in producing more accurate, diverse, and meaningful 

captions, especially for objects not present in the training dataset. We omit the details of other 

layers in the transformer decoder, such as masked multi-head attention, feed forward layer, and 

add & norm, as these components are retained according to the original design. 

Algorithm 2. TrainingTransDecCNet      

Input: Training dataset                         
̅̅ ̅̅ ̅̅ ̅   

Output: The parameters of the model   have been optimized. 

Begin 

                         
# Process each data sample in the training set 

f                
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 # Masked Multi-Head attention 

                
                      

                      
        

                  (
              

 

√ 
)        

                                  
 # Multi-Head cross-attention between the outputs of the encoder and decoder. 

 # Attention on the features of object regions 

             
         

         
  

             (
    

 

√ 
)   

 # Attention on the embeddings of the graph nodes 

             
        

         
  

             (
    

 

√ 
)   

 # Combining two sources of attention 

                               

                                      

                            

                   (      ) 

 # Calculating the logits score 

                  

 # Adjusting the logits with semantic knowledge from ConceptNet 

                      

                          

 endfor 

                    
 # Calculating the loss for the i

th
 sample 

        ∑     (  
     

          )
   
    

 # Updating the model parameters 

      
      

  
 

endfor 

End 

In Algorithm 2,    is the number of data samples in the training dataset,          and    

represent the object region features, embeddings of the nodes in the relational graph, ground 

truth captions, and the related knowledge object set for the     data sample (image), respectively. 

The ground truth captions for each image are denoted as   {           
}, where    

represents the     word in the sentence,         ̅̅ ̅̅ ̅̅ ̅, with    being the number of words in 

sentence  .   is the hidden state, and   ,   ,    and    are the weight matrices of the 

transformer decoder. These weight matrices are randomly initialised and will be learned and 

updated during training. 

Algorithm 2 trains the transformer decoder in producing captions for images by merging 

visual elements derived from object areas with semantic details from the image's relational graph 

embeddings, utilising a cross-attention system. Concurrently, it embeds insights from 
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ConceptNet to elevate the quality of the resulting captions. For every training instance, the 

procedure begins with masked multi-head self-attention, which restricts the model to relying 

solely on prior words for forecasting the subsequent one. Following this, the visual attributes of 

the image (pulled from its object zones) and semantic representations (via the relational graph) 

are fused within the multi-head cross-attention layer. The decoder's ultimate output feeds into a 

linear transformation to derive logits across the vocabulary. These logits receive modifications 

by incorporating pertinent ConceptNet values when the associated term appears in the relevant 

semantic knowledge collection. Afterwards,         normalises the revised logits into 

probability distributions for each time step across the vocabulary. This sequence iterates across 

   training examples, employing cross-entropy loss to refine the caption generation. 

Algorithm 3. GenerateCaption(       ) 

Input:      , the trained transformer model   

Output: the captions of image  ̂  

Begin 

  ̂            

              ̂   

                                (           ̂           )    

                 ( ̂ ) 

                                          

  # Combine features 

                                                

  # Predict the next word 

                                    

                            

                        

  # Update the caption 

   ̂   ̂      

     

End 

In Algorithm 3, captions for an input image are produced via a pre-trained transformer 

decoder ( ). Utilising the features from object regions and embeddings of the relationship graph, 

the process begins with the token. For every iteration, the ongoing sequence undergoes encoding 

through masked multi-head attention, followed by fusion with image features using multi-head 

cross-attention. The resulting output passes through a linear layer to yield logits across the 

vocabulary, which are then normalised by         into probabilities. The term with the peak 

probability becomes the subsequent addition. This loop persists, adding each new word to the 

sequence, until it reaches the token or the predefined maximum length. Ultimately, this yields a 

precise and relevant caption drawn from the image's characteristics. 

4. EXPERIMENTS AND RESULTS 

Grounded in the theoretical framework and model architecture described earlier, this 

section presents the experimental setup and performance evaluation using standard metrics 
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commonly adopted in image captioning tasks. It also provides an analysis of the results, along 

with a comparative assessment against baseline methods and recent state-of-the-art models, in 

order to emphasise both the strengths and potential limitations of the proposed approach. 

4.1. Data and Experimental setup 

This section describes the experimental data, parameters, and configuration settings for 

implementing the proposed method. It also presents performance evaluation metrics. 

4.1.1. Experimental Data 

The proposed framework for generating image captions underwent evaluation on the MS 

COCO dataset [30], a standard reference widely utilized for object recognition, segmentation, 

and image captioning tasks. This collection features 82,783 training images and 40,504 

validation images, each provided with a minimum of five captions authored by people. For 

uniformity in our analyses, we limited usage to the first five captions per image. To facilitate 

equitable comparisons with existing research, we adhered to the established partitioning scheme 

from [31], assigning 82,783 images to training, 5,000 to validation, and a further 5,000 to 

testing. In the preparation phase, words occurring fewer than five times were omitted from the 

lexicon, culminating in 10,010 unique terms and a maximum of 16 tokens per caption. 

4.1.2. Implementation Details 

The proposed model was developed using Python version 3.9 and implemented with the 

PyTorch deep learning framework version 2.0. All experiments were conducted on the Google 

Colab Pro platform, utilising the following computational settings and hyperparameters: 

The process of creating and embedding the relationship graph was carried out according to 

the setup in our previous study [12]. 

Transformer Decoder: The decoder consists of N = 6 blocks with 8 heads. The vector 

dimension for word representation is 512. The Adam optimizer is used with a learning rate of 

0.00004 and a batch size of 32. 

ConceptNet: ConceptNet 5.7 is employed to retrieve related entity knowledge of objects in 

the image via the REST API at api.conceptnet.io. Five objects with the highest probability are 

selected for each image to extract semantic knowledge from ConceptNet. For each object, the 

top 10 most relevant semantic knowledge entries (with the highest probability) are selected and 

input into the decoder to enhance performance during caption generation. 

The configuration of Google Colab Pro used: Tesla T4 GPU with 15 GB, 51 GB RAM. The 

image captioning model training time is approximately 12 hours (20 epoches), and the average 

inference time per image is approximately 1.5 seconds. 

4.2. Evaluation metrics 

The evaluation metrics used in this study are widely adopted measures for assessing the 

quality of generated image captions compared to the provided ground truth caption set, including 

BLUE [32], METEOR [33] và ROUGE [34] and CIDEr [35]. Each metric evaluates the captions 

from distinct perspectives and uses different calculation methods. However, a common 

characteristic of these metrics is that the higher the score, the better the model's performance. 

4.3. Results and Discussion 
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The experimental results of the proposed image captioning method are presented in Table 

1, with the BLUE1, BLUE4, METEOR, ROUGE, and CIDEr scores achieving 77.5, 34.9, 28.3, 

55.3, and 98.4, respectively, for the RGTran model (without integrating semantic knowledge 

from ConceptNet), and 79.8, 36.3, 35.6, 57.2, and 107.8 for the RGTranCNet model (with 

semantic knowledge integration from ConceptNet). These results indicate that the RGTran 

model (using transformer and cross-attention mechanism) outperforms the OD-VR-Cap method 

[12] (which uses LSTM and dual-attention mechanism) across all evaluation metrics, 

particularly with a significant increase in CIDEr (+13.3 points). This improvement is mainly 

attributed to the cross-attention mechanism of the transformer, which is capable of integrating 

information from various sources into a shared space, producing more comprehensive and 

semantically rich features than independent attention mechanisms as in OD-VR-Cap. 

Additionally, the transformer decoder is more effective than LSTM in handling complex 

relationships, thanks to the self-attention mechanism that flexibly and robustly captures the 

dependencies between words in a sentence. Furthermore, integrating semantic knowledge from 

ConceptNet into the decoder of the RGTranCNet model leads to an overall improvement across 

all evaluation metrics, with notable increases in METEOR (up by 7.3 points) and CIDEr (up by 

9.4 points). The improvement in METEOR is due to the ability to match synonyms. At the same 

time, CIDEr reflects the fluency and coherence of the generated captions, which aligns with the 

integration of semantic knowledge from ConceptNet, resulting in more accurate and meaningful 

captions. 

Table 1. Image captioning performance of the proposed method on the experimental dataset’s test set. 

Methods BLUE-1 BLUE-4 METEOR ROUGE CIDEr 

RGTran 

(without ConceptNet) 
77.5 34.9 28.3 55.3 98.4 

RGTranCNet 

(with ConceptNet) 
79.8 36.3 35.6 57.2 107.8 

An example of the results from the proposed image captioning model is presented in Figure 

5. In this figure, (a) shows the input image, and (b) shows the captions generated by the 

respective models. The results indicate that the OD-VR-Cap model [12] only captures the 

primary objects and relationships in the image (the object "man" and action "fixing" on the left, 

and the objects "person," "skateboard," and action "jumping" on the right), with details and 

context not fully represented. RGTran enhances the model's ability to identify specific locations 

and contexts; however, it still struggles with detailed contexts or objects and actions not present 

in the training dataset. In contrast, RGTranCNet incorporates additional semantic knowledge 

from ConceptNet into the decoder, allowing the model to handle unseen objects by substituting 

them with semantically relevant concepts or enriching the relationships between objects. As a 

result, the generated captions are more accurate and meaningful. 

These qualitative improvements are a direct result of integrating structured semantic 

knowledge into the captioning process. Specifically, the relationship graph enables the model to 

encode pairwise spatial and functional relations between detected objects. At the same time, 

ConceptNet provides external semantic associations that help enrich the meaning of individual 

concepts. For instance, replacing "fixing" with "repairing" or "jumping" with "performing a 

skateboard trick" reflects a deeper understanding of the functional context of the scene, not just 

object labels. This combination allows RGTranCNet to generalize better to unseen situations and 
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produce captions that are not only accurate in terms of object recognition but also more human-

like in their semantic expressiveness. 

To further demonstrate the effectiveness of RGTranCNet, Table 2 presents a comparative 

evaluation against several baseline models [9] and recent state-of-the-art approaches on the MS 

COCO dataset. RGTranCNet achieves the highest performance across all reported metrics, 

including BLEU-1 (79.8), BLEU-4 (36.3), METEOR (35.6), ROUGE (57.2), and CIDEr 

(107.8). Compared to CNet-NIC—a model that also incorporates ConceptNet but relies on a 

conventional NIC architecture—RGTranCNet outperforms it significantly in BLEU-4 (+6.4), 

METEOR (+10.0), and CIDEr (+0.6), indicating substantial improvements in both 

expressiveness and semantic representation. Similarly, in comparison to ConvNeXt, a model 

built upon a modern visual encoder architecture, RGTranCNet also achieves superior results in 

BLEU-1 and BLEU-4. 

Notably, the Caption TLSTMs model achieves a CIDEr score of 101.8, surpassing both 

OD-VR-Cap and RGTran, which demonstrates its ability to produce highly informative captions. 

This performance stems from its architectural design, which integrates an abstract scene graph 

and a Transformer block inserted between two LSTM layers. Such a configuration enables the 

model to generate captions that are diverse in content and coherent in structure, thereby 

contributing to a notable improvement in CIDEr. However, its CIDEr score remains lower than 

that of RGTranCNet, suggesting that while the architecture is effective, it does not reach the 

level of semantic and structural richness provided by the proposed model. Moreover, Caption 

TLSTMs underperforms on other metrics such as BLEU and METEOR, indicating that its 

semantic expressiveness is still less comprehensive compared to RGTranCNet, which achieves 

consistently high performance across both syntactic and semantic dimensions. 

Table 2. Comparison of image captioning performance across methods on the experimental dataset. 

Methods BLUE-1 BLUE-4 METEOR ROUGE CIDEr 

Show, attend and tell 

(Hard-ATT) [9] 

71.8 25.0 23.0 - - 

Show, attend and tell 

(Soft-ATT) [9] 

70.7 24.3 23.9 - - 

CNet-NIC [18] 73.1 29.9 25.6 53.9 107.2 

En-De-Cap [20] 70.6  24.3 - - - 

Caption TLSTMs [23] - 22.9 25.2 50.9 101.8 

Bi-LS-AttM [21] 68.8 25.2 21.5 - 41.2 

ConvNeXt [24] 74.8 34.8 - - - 

OD-VR-Cap [12] 72.6 28.1 24.8 53.4 85.1 

RGTran (ours) 77.5 34.9 28.3 55.3 98.4 

RGTranCNet (ours) 79.8 36.3 35.6 57.2 107.8 

In summary, the experimental results validate that integrating relationship graphs, a 

Transformer decoder with cross-attention, and semantic knowledge from ConceptNet constitutes 

a practical approach to image captioning. RGTranCNet not only exploits visual and relational 

structural information but also demonstrates the ability to synthesise semantics and infer 

meaning from external knowledge sources. Consequently, it generates captions that are more 

accurate, fluent, and semantically enriched than those produced by prior methods. 

4.4. Computational Complexity Analysis 
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This section presents a detailed analysis of the computational complexity of the proposed 

RGTranCNet framework, considering both training and inference phases. The framework 

comprises four major components: object detection, relationship graph construction, graph 

embedding, and transformer-based caption generation. 

Importantly, in the proposed approach, only the transformer decoder is trained, while the 

remaining components - including the object detection module, the relationship graph 

construction module, and the graph embedding module - are reused from our previously 

published OD-VR-Cap [12]. These components are fixed and frozen during both training and 

inference. As a result, the training cost is significantly reduced. 

4.4.1. Training Complexity 

Since the transformer decoder is the only trainable component, the training complexity of 

the framework is dominated by the self-attention and feedforward layers. For a caption sequence 

of length    and embedding dimension   , the self-attention sublayer in each decoder layer has 

a time complexity of     
     , while the position-wise feedforward network adds       

  . 

Assuming    decoder layers, the overall training-time complexity becomes: 

        
          

   . 

This lightweight training setup makes the model computationally efficient and feasible for 

training on limited hardware. 

4.4.2. Inference Complexity 

During inference, all modules are activated to generate image captions. The overall 

inference complexity includes: 

 The object detection module, derived from ODwGCN in OD-VR-Cap [12], enhances 

conventional detectors by incorporating co-occurrence relations via a GCN. However, 

during inference, this component functions as a fixed model and performs a single forward 

pass through the GCN over the detected objects. As such, the inference-time complexity is 

     , where    is the number of detected objects in the image. 

 The relationship graph construction module, also reused from OD-VR-Cap [12], builds a 

scene-level relationship graph by applying deterministic rules over object pairs. This step 

involves pairwise evaluation and has worst-case time complexity     
  . 

 The graph embedding module, inherited from OD-VR-Cap [12] as well, uses the 

GraphSAGE architecture to embed the relationship graph. Since the GCN parameters are 

fixed, the complexity is determined by message passing operations over the graph. For     
nodes and dimension    , and    layers, the total cost is            

  . 

 The transformer decoder, used to generate the caption, has inference complexity 

O      
     , where    is the caption length and    the number of decoder layers. 

Thus, the overall inference-time complexity of the framework can be approximated as: 

    
           

       
      

Given that    is usually less than 20,    ranges from 10 to 15, and    is typically 512 or 

1024, the framework remains computationally tractable and efficient in practical settings. 
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Given that    is usually less than 20,    ranges from 10 to 15, and    is typically 512 or 

1024, and both    and    are commonly between 2 and 8, the framework remains 

computationally tractable and efficient in practical settings. 

Regarding space complexity, the primary memory consumption stems from storing 

intermediate visual feature maps, static knowledge embeddings, and attention states maintained 

within the transformer decoder. Since the object detection, relationship graph construction, and 

graph embedding modules are all reused from previous work and remain frozen during both 

training and inference, the memory footprint is highly stable. Additionally, the relationship 

graph structure is compact and fixed, contributing to the model's efficient memory utilization. 

As a result, the overall space complexity of the framework remains low and well-suited for 

deployment in resource-constrained environments. 

These complexity characteristics suggest that RGTranCNet is computationally efficient and 

scalable, with low memory requirements and a minimal training cost. 

 

Figure 5. Example results from the test image set for the proposed method and OD-VR-Cap. 

5. CONCLUSIONS 

In this research, we present RGTranCNet, an innovative model for image captioning 

grounded in the encoder-decoder paradigm. It employs a transformer-based decoder equipped 

with cross-attention functionality, while integrating semantic insights from ConceptNet directly 

into the decoding phase. By harnessing the transformer's strength in modelling contextual 

dependencies and drawing on outside semantic resources, the system boosts both the precision 

and variety of the generated descriptions. Evaluations performed on the benchmark MS COCO 

dataset indicate that our framework surpasses contemporary efforts in terms of overall 

effectiveness. The addition of ConceptNet-derived semantics enhances the model's ability to 

craft more precise and contextually aligned descriptions, thereby improving the capabilities of 

automated captioning solutions. Importantly, this technique can be seamlessly incorporated into 

the decoding components of alternative encoder-decoder-based captioning systems to amplify 

their results. As such, the proposed solution proves both viable and applicable, laying the 

groundwork for advancing captioning technologies across diverse practical sectors. While our 

tests were confined to the MS COCO dataset, the methodology lends itself to adaptation for 
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other collections (such as Flickr8k or Flickr30k), given that training is limited to the decoder 

with other elements held constant. 

Furthermore, the external knowledge infusion from ConceptNet operates independently of 

particular image traits, ensuring the method avoids over-reliance on the format of any given 

training set. Looking ahead, we intend to deploy and assess the model on these additional 

datasets to confirm its versatility. We also aim to incorporate inter-concept relationships from 

ConceptNet within the encoder to provide richer context and refine caption quality. 
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