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Abstract. Free vibrations of cracked microbeams made of Functionally Graded Material (FGM) 

rested on the Winkler-Pasternak elastic foundation based on the Modified Coupled Stress 

Theory (MCST) are presented. Material properties of the beam vary throughout the thickness 

according to the power distribution and the Mori–Tanaka homogenization technique. The 

Timoshenko beam theory considering the size effect based on the MCST is applied. A size-

dependent finite element model with new non-classical shape functions is proposed to obtain the 

stiffness and mass matrices of the intact FGM Timoshenko microbeam. The stiffness matrix of 

the cracked beam element obtained by adding an overall additional flexibility matrix to the 

flexibility matrix of the corresponding intact beam element can give more accurate natural 

frequencies. The influences of the size-effect, material, geometry, and crack parameters on 

natural frequencies and mode shapes are then analyzed. It is shown that the study results can be 

applied to other FGMs as well as more complex microbeam structures. 
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1. INTRODUCTION 

Functionally Graded Materials (FGMs) represent a new generation of inhomogeneous 

composites that have garnered significant interest. Their unique thermo-mechanical properties 

make them versatile for various applications across industries, including aircraft, biomedical 

products, space vehicles, and more. Micro–Electro-Mechanical Systems (MEMS) are the new 

field in which FGMs have been utilized to achieve the desired performance. Micro-sized 

structures such as plates, sheets, beams, and framed structures are widely used in the MEMS 

devices, for example, electrically actuated devices, atomic force microscopes, etc. 

Classical mechanical theories fail to provide satisfactory solutions for micro elements due 

to their inability to account for size-effects at the micro/nano scale. The Modified Couple Stress 

Theory (MCST) [35], which uses only one material length scale parameter to capture the size-

dependent behaviour of structures and employs only the symmetric part of the couple stress 

tensor as a suitable measure of the continuum micro-rotation, has been chosen to analyse 

microstructures. 
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It is well known that cracks lead to a decrease in the stiffness and an increase in the 

flexibility of a structure. In microstructures, damages or cracks can occur due to the absence of 

atoms [18] or by thermal fabrication process [17]. The fundamental results of vibration analysis 

have been obtained more extensively for intact FGM microstructures than for cracked 

microstructures. The complexity of the problems in either fracture mechanics of FGMs [2, 3], as 

well as in the dynamics of cracked FGM microstructures with both varying material and 

geometry, is perhaps the major reason. 

To date, there have been limited studies on the bending, vibrations and buckling of 

homogeneous cracked microbeams. Zhou et al. [37] analysed the dynamic characteristics of 

electro-statically actuated microbeams with slant cracks using the classical EBT. Utilizing the 

MCST combined with analytical or semi-analytical methods, Sourki and Hoseini [33] analysed 

free vibrations of homogeneous cracked EBT microbeams. Khorshidi and Shariati [6, 21] 

analysed the buckling and post-buckling of the cracked TBT microbeam. Wu et al. [34] studied 

the vibrational power flow of a homogeneous TBT microbeam with a crack. Atci [11] studied 

nonlinear vibrations of homogeneous cracked microbeams considering the longitudinal 

elongation effects. Shaat et al. [30] investigated the vibration of cracked nanobeams made of 

nanocrystalline materials based on Mindlin’s couple stress theory and Mori-Tanaka model for 

the incorporation of the heterogeneous surface energy effects. Using FEM, Akbas [9] 

investigated the bending of a cracked FGM microbeam with Hermite shape functions. He 

analysed free vibration [8] and forced vibration of the cracked homogeneous  [10] and FGM [7] 

cantilever under the impulse force at the free end applying the Kelvin-Voigt damping model. 

Kar and Srinivas [20] analysed transient responses of bi-directional FGM microbeams with edge 

cracks resting on nonlinear elastic foundations subjected to thermal shock loads based on the 

Mori-Tanaka model. Saimi et al. [28] examined the effects of cracks on the free vibrations of bi-

directional FG porous microbeams in the combination with Q3D beam theory. 

It is worth noting that the elastic equivalent spring model of the crack is developed based 

on the local flexibility matrix [12, 13, 26]. Zheng and Kessissoglou [5] demonstrated that the 

local flexibility matrix is especially appropriate for the analysis of a cracked beam if one 

employs an analytical and semi-analytical method, etc. However, the local flexibility matrix 

disregards the influences of shearing forces on the opening type of the crack, rendering it less 

accurate. The authors proposed to add an “overall additional flexibility matrix”, instead of the 

“local additional flexibility matrix”, to the flexibility matrix of the corresponding intact beam 

element to obtain the total flexibility matrix, and therefore the stiffness matrix. Compared with 

analytical results, the new stiffness matrix obtained can give more accurate natural frequencies 

than those resulting from using the local additional flexibility matrix. 

In this work, free vibrations of FGM microbeams on a Winkler-Pasternak elastic 

foundation are studied based on the MCST, the TBT and the Mori–Tanaka homo-genization 

technique. Non-classical shape functions of the microbeam element are derived based on the 

governing vibration equations for the FGM microbeam using the MCST and the TBT. Using 

shape functions proposed, the stiffness matrix and the mass matrix of an intact microbeam are 

identical to the stiffness matrix and the mass matrix in the case of a homogeneous microbeam or 

a classical Timoshenko beam. The stiffness matrix of a cracked beam element obtained by 

adding an overall additional flexibility matrix to the flexibility matrix of the corresponding intact 

beam element can give more accurate natural frequencies. In addition, the influences of material, 

crack, foundation, length scale parameters and slenderness ratio on the natural frequencies of 

FGM microbeams are investigated in detail. 
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2. GOVERNING EQUATIONS OF FGM TIMOSHENKO MICROBEAMS 

Consider an FGM microbeam of length L, rectangular cross-section hbA   (Fig. 1) 

resting on a Winkler-Pasternak foundation. It is assumed that the material volume fraction of the 

FGM microbeam varies along the thickness direction as follows [31]: 

1 1 1 1
; 1 ;
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   (1) 

where n is the volume fraction index, and z is the coordinates from the mid-plane of the beam. 

According to the Mori–Tanaka homogenization technique [25], the effective bulk modulus K 

and shear modulus G can be calculated by 
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where the subscripts m and c denote metal and ceramic materials, respectively. Effective 

material properties of the FGM microbeam such as Young’s modulus E, Poisson’s ratio  and 

mass density  can be determined as follows: 
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The displacements at a point on the cross-section of the Timoshenko beam can be 

represented as follows: 

0 0 0( , , ) ( , ) ( ) ( , ); ( , , ) ( , )u x z t u x t z h x t w x z t w x t   
   

(4) 

where u0(x,t) and w0(x,t) are axial displacement and deflection of a point on the neutral axis, 

respectively; h0 is the distance from the neutral axis to x-axis; (x,t) is the rotation angle of the 

cross-section. Applying the MCST, the deformation , stress , deviatoric couple stress m and 

curvature  tensors can be expressed as follows: 
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with the following nonzero components 
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Figure 1. An FGM microbeam on a Winkler-Pasternak elastic foundation. 

Kw 
Kp 

Neutral axis 



 
 

Chu Thanh Binh, Tran Van Lien 

1006 

where  and ks are the Lame’s coefficient and the shear correction coefficient (ks=5/6 for a 

rectangular cross-section). 

From Eqs. (4)-(6), the strain energy and kinetic energy variation of the microbeam based on 

the MCST can be obtained as follows [27]: 
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where N, M, Q, and Y are the axial normal force, the bending moment, the shear force, and the 

couple moment, respectively: 
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Applying Hamilton’s principle leads to the governing equations of vibration as follows: 
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where A11, A12, A22, A33 are the rigidities and I11, I12, I22 are the mass moments, respectively: 
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3. SHAPE FUNCTIONS OF THE FGM TIMOSHENKO MICROBEAM ELEMENT 

To avoid the shear-locking problem, the solution of the equilibrium equation is adopted to 

interpolate the transverse displacement and rotation in derivation of the element stiffness and 

mass matrix. Neglecting the external static load and accepting the neutral axis, the first equation 

of (9) is uncoupled with the remaining equations. Thence, Eq. (9) can be rewritten as follows: 
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Setting the new variables: 
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and integrating the second equation of (12) yield: 
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where c1 is an integration constant. Introducing the nondimensional variable x x L  and 

neglecting the first term because of  
2

0L  , Eq. (13) can be rewritten as follows: 
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Integrating Eq. (16) and substituting into Eq. (14) yield: 
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Using the boundary conditions 
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Four integration constants c1, c2, c3, c4 can be determined as follows: 
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where  is the ratio of the bending to the shear stiffness of the FGM microbeam element: 
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 is identical to the coefficient proposed by Kahrobaiyan et al. in [19] in the case of the 

homogeneous microbeam element. Substituting the integration constants from Eq. (21) into Eq. 

(19) yields the shape functions of the FGM Timoshenko microbeam element as follows: 
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These non-classical shape functions are identical to shape functions proposed by [14-16, 19, 

36] for the homogeneous Timoshenko microbeam element in the case of 22 33;A EI A GA  . 

Letting 0  yields the shape functions of the classical Timoshenko beam element [22]. Letting 

0   yields the Hermite shape functions and its derivative. 

4. STIFFNESS AND MASS MATRIX OF AN INTACT FGM MICROBEAM ELEMENT 

The microbeam is divided into several two-node beam elements with the nodal 

displacements  , , , , ,d
T

i i i j j ju w u w   where i and j denote the left and right nodes, 

respectively. The displacements and rotation angles of the FGM Timoshenko microbeam 

element can be interpolated as follows: 
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where 1 2;u uN N  are Lagrange’s shape functions of the axial displacement: 
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Using the shape functions (24) and applying the well-known procedures of FEM [38], we 

obtain the stiffness and the mass matrices of the intact FGM Timoshenko microbeam element 

based on the MCST rested on the Winkler-Pasternak elastic foundation as follows: 
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where Kw, Kp are the Winkler-Pasternak elastic foundation coefficients. The stiffness matrix of 

the microbeam element can be rewritten as follows: 

e b w pK =K +K K      (27) 

 The stiffness matrix (27) is identical to the stiffness matrix proposed by Dehrouyeh-

Semnani and Bahrami [14] in the case of the homogeneous microbeam element. Letting 0  

yields the stiffness matrix of the classical Timoshenko beam element [22]. Letting 0   yields 

the stiffness matrices of the classical beam element rested on the Winkler-Pasternak foundation. 

The mass matrix of the microbeam (26) is identical to the mass matrix proposed by [15, 19] for 

the homogeneous Timoshenko microbeam in the case of 22 33;A EI A GA  . Letting 0  

yields the mass matrix of the classical Timoshenko beam element [22]. 

5. STIFFNESS MATRIX OF A CRACKED MICROBEAM ELEMENT 

Figure 2 shows a cracked microbeam element under the local coordinate. The relationship 

between the nodal displacements (u,v,) and forces (U,V,) can be expressed as [5]. 

11 11 12 13

3 2

21 22 22 22 23

2

31 22 32 22 33

3 2

2

total
C

j i j j

j i i j j

j i j j

u u U L A c c c U
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c L A c L A c


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         
      

            
                 

(28) 

where Ctotal is the total flexibility matrix and 
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(29) 

F1, F2, FII are the correction factors for stress intensity factors: 
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  (30) 

The stiffness matrix Kcrack of a cracked beam element can be obtained from the total 
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Figure 2. A cracked FGM microbeam. 
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flexibility matrix as follows [5, 29]: 

-1 T

crack total
K LC L      (31) 

where 

 

1 0 0 1 0 0

0 1 0 1 0

0 0 1 0 0 1

T
L L

 
 

  
 
  

    (32) 

Finally, the discrete on FEM formulation for free vibration problems of the cracked FGM 

Timoshenko microbeam based on the MCST can be expressed as follows: 

       M D K D 0      (33) 

where D, M and K are the global displacement vector, mass and stiffness matrices of the 

microbeam structure, respectively. Eq. (33) leads to the following characteristic equation: 

2det 0K M         (34) 

where ω is the natural frequency of the cracked FGM Timoshenko microbeam structure. 

6. NUMERICAL RESULTS AND DISCUSSION 

For convenience, the non-dimensional frequencies and elastic foundation coefficients can 

be defined: 
22 4 3

; ; ;
12

pi m w
i w p

m m m

K LL K L bh
k k I

h E E I E I

 
        (35) 

The first comparison of the fundamental frequency calculated by the proposed FEM using 

10 elements for the simply-supported intact FGM microbeam with those of Reddy [27], is shown 

in Table 1. Good agreements are also obtained for the first three nondimensional frequencies of 

the simply-supported intact FGM microbeam with those of Reddy.  

Table 1. Comparisons of the first three frequencies of the FGM microbeam. 

Reddy [27] Present 

n l/h 1 2 3 1 2 3 

0 

Classical 9.83 38.82 85.63 9.8283 38.9271 86.8136 

0.2 10.65 42.06 92.78 10.6428 42.0926 93.7006 

0.4 12.80 50.52 111.34 12.7715 50.3129 111.4473 

0.6 15.73 62.01 136.39 15.6709 61.3618 134.9213 

0.8 19.08 75.05 164.51 18.9669 73.6679 160.4385 

1.0 22.66 88.84 193.82 22.4570 86.3428 188.8944 

1 

Classical 8.67 34.29 75.59 8.6709 34.4287 77.0280 

0.2 9.59 37.93 93.84 9.5872 38.0123 91.8873 

0.4 11.93 47.16 105.15 11.9133 47.0513 104.5548 
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0.6 15.04 59.35 130.77 14.9892 58.8449 129.7974 

0.8 18.52 72.91 160.69 18.4185 71.7242 156.6851 

1.0 22.28 87.42 190.99 22.0072 84.8308 188.1667 

10 

Classical 10.28 40.47 88.80 10.2914 40.7171 90.6812 

0.2 11.07 43.56 95.58 11.0708 43.7379 97.2310 

0.4 13.17 51.70 113.38 13.1274 51.6587 114.2740 

0.6 16.00 62.88 137.66 15.9584 62.4185 137.0611 

0.8 19.30 75.67 165.14 19.2007 74.4929 162.0250 

1.0 22.92 89.57 194.63 22.6500 86.9891 189.0572 

Table 2 presents comparisons of the nondimensional fundamental frequency ratios between 

the cracked homogeneous beam and the intact one, which are calculated according to the local 

flexibility matrix proposed by Qian et al. [26] and the overall additional flexibility matrix 

proposed by Zheng and Kessissoglou [5], with the results published by Aydin [1] and Lien et al. 

[23], which are calculated according to the rotational spring model. The obtained numerical 

results show good agreement with previously announced results. 

Table 2. Comparisons of the fundamental frequency ratios of the beam with a single crack. 

Cantilever x1/L=0.2 x1/L=0.4 x1/L=0.6 

Aydin 0.9906 0.9958 0.9982 

Lien et al. 0.9900 0.9960 0.9980 

Present (Qian et al.) 0.9930 0.9971 0.9992 

Present (Zheng and Kessissoglou) 0.9902 0.9960 0.9989 

Clamped-Clamped x1/L=0.1 x1/L=0.3 x1/L=0.4 

Aydin 0.9971 0.9963 0.9943 

Lien et al. 0.9970 0.9960 0.9930 

Present (Qian et al.) 0.9960 0.9991 0.9966 

Present (Zheng and Kessissoglou) 0.9944 0.9988 0.9953 

Simple-Simple x1/L=0.2 x1/L=0.4 x1/L=0.7 

Aydin 0.9959 0.9916 0.9985 

Lien et al. 0.9950 0.9910 0.9980 

Present (Qian et al.) 0.9978 0.9942 0.9956 

Present (Zheng and Kessissoglou) 0.9970 0.9918 0.9939 

For the case study, the free vibrations of the FGM cracked microbeam of the rectangular 

cross-section with b = h and length L = 20h, resting on the Winkler-Pasternak elastic foundation 

with coefficients kw and kp, are studied. The constituents of the microbeam include aluminum:   

Em = 70 GPa; m = 2702 kg/m
3
; m = 0.3; and ceramic: Ec = 427 GPa; c = 3100 kg/m

3
; c = 0.17 

[32]. The material length scale parameter of FG microbeams is taken as l = 15 m in this study. 

The first two frequency ratios between the non-dimensional frequencies of the cracked FGM 
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microbeam and the intact ones will be considered, concerning the actual neutral axis position for 

different cracks, size effects, materials, geometry, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows the changes of the first two frequency ratios of the simply supported ends 

microbeam considering the crack position moving along the beam length with different L/h 

ratios: L/h = 10 (black, solid line), L/h = 20 (red, dashed line), and L/h = 30 (blue, dash-dot 

line). The height of the microbeam is equal to h = 30 m, so the ratio of the material length scale 

parameter to the height is equal to 0.5 (l/h = 0.5). The depth of the crack is equal to 20 % of the 

height of the beam (a/h = 0.2), and the volume fraction index is equal to 3. It is shown that the 

non-dimensional frequencies of the cracked microbeam decrease remarkably when the length of 

the beam decreases and the crack is at some positions in the beam, for example, x/L = 0.5 for the 

first frequency ratio. The decrease of the lower frequency is more distinct than the decrease of 

the higher frequency. In the following studies, the length of the microbeam L = 20h will be 

considered in detail. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Changes of the first two frequency ratios of the simply supported ends microbeam considering 

the crack position moving along the beam length with different material length scale parameters:                    

(a) First frequency ratio, (b) Second frequency ratio 

 

a) b) 

a) b) 
Figure 3. Changes of the first two frequency ratios of the simply supported ends microbeam considering 

the crack position moving along the beam length with different L/h ratios : (a) First frequency ratio,                 

(b) Second frequency ratio. 
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Table 3. Critical points for the first three frequencies with different boundary conditions. 

Boundary 

condition 

Hot spot Critical point 

First 

frequency 

(x/L) 

Second 

frequency 

(x/L) 

Third 

frequency 

(x/L) 

First 

frequency 

(x/L) 

Second 

frequency 

(x/L) 

Third 

frequency 

(x/L) 

Simply-supported 

ends 
0.5; 

0.25; 

0.75; 

0.15; 0.5; 

0.85; 
- 0.5; 0.33;0.66; 

Clamped ends 0; 0.50; 1; 
0; 0.3; 

0.7; 1; 

0; 0.2; 0.5; 

0.8; 1; 

0.22; 

0.78; 

0.13; 0.5; 

0.87; 

0.1; 0.35; 

0.65; 0.9; 

Clamped-free 0; 0; 0.54; 
0; 0.31; 

0.72; 
- 0.22; 

0.13; 

0.49; 

Clamped-simply 

supported 
0; 0.63; 

0; 0.33; 

0.79; 

0; 0.22; 

0.53; 0.86 
0.26; 0.14; 0.55; 

0.1; 0.38; 

0.69; 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 presents the changes of the first two frequency ratios of the simply supported ends 

microbeam considering the crack position moving along the beam length in the case of the 

height h = 30 m and different material length scale parameters l = 0, 15, 30 m corresponding 

to l/h = 0 (black, solid line), l/h = 0.5 (red, dashed line), and l/h = 1 (blue, dash-dot line), 

respectively. The depth of the crack is equal to 20 % of the height of the beam (a/h = 0.2), and 

the volume fraction index is equal to 3. It is shown that the non-dimensional frequencies of the 

cracked microbeam decrease remarkably when the material length scale parameter increases and 

the crack is at some positions in the beam, called hot spots for a given frequency, such as x/L = 

0.5 for the first frequency ratio, x/L = 0.25, 0.75 for the second frequency ratio, etc. Moreover, 

there exist positions in the beam, called critical points for a given frequency, at which the crack 

makes nondimensional frequencies unchanged or changes very little. These hot spot and critical 

point positions of FGM cracked microbeams coincide with the ones of homogeneous [4] and 

FGM macrobeams [23] or nanobeam [24] for different boundary conditions (Table 3). It is noted 

Figure 5. Changes of the first two frequency ratios of the simply supported ends microbeam considering 

the crack position moving along the beam length with different volume fraction indices: (a) First 

frequency ratio, (b) Second frequency ratio. 

 

a) b) 
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that nondimensional frequencies of macrobeams or nanobeams are unchanged at critical points 

while nondimensional frequencies of microbeams can be unchanged or changed very little. In 

particular, the positions of critical points remain independent of the number of cracks. They are 

useful information for detecting cracks in cases where the specific frequency does not change or 

changes only slightly. 

Figure 5 illustrates the variations in the first two frequency ratios of the microbeam as the 

crack position moves along the beam length. The curves represent different volume fraction 

indices: n = 0 (black, solid line), n = 3 (red, dashed line) and n = 10 (blue, dash-dot line). The 

depth of the crack is set to 20 % of the height of the beam, and the ratio of the material length 

scale parameter to the height of the microbeam is fixed at 0.5 (l/h = 0.5). The results indicate a 

significant decrease in the nondimensional frequencies of the cracked FGM microbeam as the 

volume fraction index decreases. In other words, the changes in nondimensional frequencies of 

the cracked homogeneous microbeam corresponding to n = 0 are more remarkable than the ones 

of FGM microbeams. The variations in frequencies of the cracked microbeam with the different 

volume fraction indices contrast with those observed in FGM macrobeam [23] or nanobeam 

[24]. Furthermore, Table 3 provides the positions of hot spots and critical points corresponding 

to a given frequency. The same conclusions are met in the microbeam with the other boundary 

conditions such as clamped ends, clamped-free, and clamped-simply supported. In the following 

studies, the only simply supported ends microbeams are investigated for the sake of simplicity. 

 

 

 

 

 

 

 

 

 

Figure 6. Changes of the first two frequency ratios of the simply supported ends microbeam considering 

the crack position moving along the beam length with different ratios between modulus of Young’s 

elasticity of ceramic and metal materials: (a) First frequency ratio, (b) Second frequency ratio. 

Figure 6 shows the changes of the first two frequency ratios of the microbeam considering 

the crack position moving along the beam length with different ratios between Young’s modulus 

of elasticity of ceramic and metal materials: Ec/Em = 0.1 (black, solid line), Ec/Em = 6.1 (red, 

dashed line) and Ec/Em = 60 (blue, dash-dot line), respectively. The depth of the crack is equal to 

20 % of the height of the beam, the volume fraction index is equal to 3 and the ratio of the 

material length scale parameter to the height of the microbeam is equal to 0.5 (l/h = 0.5). It is 

shown that the non-dimensional frequencies of the cracked microbeam decrease remarkably at 

hot spots in the beam when the ratio between Young’s modulus of elasticity of the ceramic and 

the metal materials decreases. The changes of frequencies of the cracked microbeam with 

different ratios between Young’s modulus of elasticity of the ceramic and the metal materials are 

contrary to the ones of the FGM macrobeam [23] or the nanobeam [24]. 
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Figure 7. Changes of the first two frequency ratios of the simply supported ends microbeam considering 

the crack position moving along the beam length with different ratios between Poisson’s coefficients of 

ceramic and metal materials: (a) First frequency ratio, (b) Second frequency ratio. 

Figure 7 presents the changes of the first two frequency ratios of the microbeam 

considering the crack position moving along the beam length with different ratios between 

Poisson’s coefficients of ceramic and metal materials: vc/vm = 0.1 (black, solid line), vc/vm = 

0.17/0.3 (red, dashed line) and vc/vm = 1.2 (blue, dash-dot line). The depth of the crack is equal 

to 20 % of the height of the beam, the volume fraction index is equal to 3 and the ratio of the 

material length scale parameter to the height of the microbeam is equal to 0.5 (l/h = 0.5). It is 

shown that the nondimensional frequencies of the cracked microbeam decrease remarkably at 

hot spots in the beam when the ratio between Poisson’s coefficients of the ceramic and the metal 

materials decreases while the influence of the change of the Poisson’s coefficient on vibration 

frequencies at remaining positions can be ignored. It is noted that the influence of the change of 

Poisson’s coefficient on vibration frequencies of the FGM macrobeam or nanobeam can be 

ignored. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Changes of the first two frequency ratios of the simply supported ends microbeam considering 

the crack position moving along the beam length with different ratios between the crack depth and the 

beam height: (a) First frequency ratio, (b) Second frequency ratio. 

 

a) b) 
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Figure 8 illustrates the changes of the first two frequency ratios of the simply supported 

ends microbeam considering the crack position moving along the beam length with different 

ratios between the depth of the crack and the height of the beam: a/h = 0.1 (black, solid line), 

a/h = 0.2 (red, dashed line), and a/h = 0.3 (blue, dash-dot line). The volume fraction index is 

equal to 3 and the ratio of the material length scale parameter to the height of the microbeam is 

equal to 0.5 (l/h = 0.5). It is shown that the nondimensional frequencies of the cracked 

microbeam decrease remarkably when the depth of the crack increases. The changes in 

frequencies of the cracked FGM microbeam with different crack depths are similar to the ones of 

the homogeneous beam [4] and the FGM macrobeam [23] or the nanobeam [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9 shows the changes of the first two frequency ratios of the simply supported ends 

microbeam considering the crack position moving along the beam length with different Winkler 

elastic foundation coefficients: kw=0 (black, solid line), kw=50 (red, dashed line), and kw=100 

(blue, dash-dot line). The depth of the crack is equal to 20 % of the height of the beam, the 

Figure 9. Changes of the first two frequency ratios of the simply supported ends microbeam considering 

the crack position moving along the beam length with different Winkler elastic foundation coefficients:     

(a) First frequency ratio, (b) Second frequency ratio. 

a) b) 

Figure 10. Changes of the first two frequency ratios of the simply supported ends microbeam considering 

the crack position moving along the beam length with different Pasternak’s elastic foundation coefficients: 

(a) First frequency ratio, (b) Second frequency ratio.  

a) b) 



 
 
Vibrations of cracked FGM microbeams based on Modified Coupled Stress Theory  

1017 

volume fraction index is equal to 3 and the ratio of the material length scale parameter to the 

height of the microbeam is equal to 0.5 (l/h=0.5). It is shown that the nondimensional 

fundamental frequency of the cracked microbeam resting on the Winkler elastic foundation 

decreases remarkably when the Winkler foundation coefficient decreases. However, the 

influence of cracks on the higher frequencies of the FGM microbeam resting on the Winkler 

elastic foundation can be ignored. 

Figure 10 presents the changes of the first two frequency ratios of the simply supported 

ends microbeam considering the crack position moving along the beam length with different 

Pasternak’s elastic foundation coefficients: kp=0 (black, solid line), kp=25 (red, dashed line), and 

kp=50 (blue, dash-dot line). The depth of the crack is equal to 20 % of the height of the beam, the 

volume fraction index is equal to 3 and the ratio of the material length scale parameter to the 

height of the microbeam is equal to 0.5 (l/h=0.5). It is shown that the non-dimensional 

frequencies of the cracked microbeam resting on the Pasternak elastic foundation decrease 

remarkably when the Pasternak foundation coefficient decreases. The changes in frequencies of 

the cracked microbeam with the Pasternak foundation coefficient are contrary to the ones of the 

FGM macrobeam or the nanobeam. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 shows the changes of the first two frequency ratios of the simply supported ends 

microbeam considering the equidistant crack number increasing from 1 to 9 and different 

material length scale parameters: l/h = 0 (black, solid line), l/h = 0.5 (red, dashed line), and l/h = 

1 (blue, dash-dot line). The depth of the crack is equal to 20 % of the height of the beam, the 

volume fraction index is equal to 3 and the ratio of the material length scale parameter to the 

height of the microbeam is equal to 0.5 (l/h = 0.5). Moreover, the Winkler-Pasternak elastic 

foundation coefficients, kw and kp, are equal to 0. It is shown that the non-dimensional 

frequencies of the cracked FGM microbeam decrease remarkably when the number of cracks 

and the material length scale parameter increase. 

5. CONCLUSIONS 

In this paper, free vibrations of cracked FGM Timoshenko microbeams resting on the 

Winkler-Pasternak elastic foundation based on the MCST are presented. Material properties of 

Figure 11. Changes of the first two frequency ratios of the simply supported ends microbeam considering 

the equidistant crack number increasing from 1 to 9 and different material length scale parameters:                    

(a) First frequency ratio, (b) Second frequency ratio. 

a) b) 
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the beam vary throughout the thickness according to the power distribution and the Mori–

Tanaka homogenization technique. Non-classical shape functions are proposed to obtain 

stiffness and mass matrices of the intact FGM Timoshenko microbeam. The stiffness matrix of 

the cracked beam element obtained by adding an overall additional flexibility matrix to the 

flexibility matrix of the corresponding intact beam element can give more accurate natural 

frequencies. Comparisons of the calculated results with published results are provided to validate 

the reliability of the proposed FEM model. Thenceforth, the influence of material length scale, 

geometry, materials, crack parameters and boundary conditions on the free vibration frequencies 

of multiple cracked FGM microbeams is studied. The calculated results show that the 

frequencies of the cracked FGM microbeam decrease remarkably when: 

a) The ratio of the material length scale parameter to the height of the microbeam (l/h), the 

ratio of the crack depth to the height of the microbeam (a/h), and the number of cracks increase. 

b) The ratio of the length to the height of the beam (L/h), the volume fraction index (n), the 

ratio of Young’s modulus of elasticity of the ceramic and the metal (Ec/Em), the ratio of 

Poisson’s coefficient of the ceramic and the metal (c/m), and Winkler-Pasternak elastic 

foundation coefficients (kw, kp) decrease. Nevertheless, the influence of the ratio of Poisson’s 

coefficient (c/m) and Winkler-Pasternak foundation coefficients (kw, kp) is not so distinct as the 

influence of the ratio of the length to the height of the beam (L/h), the material length scale 

parameter (l/h), the volume fraction index (n), the ratio of Young’s modulus of elasticity of the 

ceramic to the metal materials (Ec/Em), and the depth of the crack (a/h). 

c) The decrease of lower frequencies is more obvious than higher frequencies. Moreover, 

the decrease in higher frequency caused by the depth of cracks is more remarkable than the ones 

caused by the material length scale parameter. The fundamental frequency of cracked FGM 

microbeams is most sensitive to the depth of the crack. 

d) The positions of hot spots and critical points in multiple cracked FGM microbeams not 

only align with those in homogeneous and FGM macrobeams but also remain unaffected by the 

material length scale parameter and the number of cracks in the beam.  

All the aforementioned observations provide valuable insights for identifying cracks in 

multiple cracked FGM microbeams through measurements of free vibration frequencies or mode 

shapes. This study can be further extended to include other types of FGMs and a wider range of 

microstructures. 
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