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Abstract. Free vibrations of cracked microbeams made of Functionally Graded Material (FGM)
rested on the Winkler-Pasternak elastic foundation based on the Modified Coupled Stress
Theory (MCST) are presented. Material properties of the beam vary throughout the thickness
according to the power distribution and the Mori-Tanaka homogenization technique. The
Timoshenko beam theory considering the size effect based on the MCST is applied. A size-
dependent finite element model with new non-classical shape functions is proposed to obtain the
stiffness and mass matrices of the intact FGM Timoshenko microbeam. The stiffness matrix of
the cracked beam element obtained by adding an overall additional flexibility matrix to the
flexibility matrix of the corresponding intact beam element can give more accurate natural
frequencies. The influences of the size-effect, material, geometry, and crack parameters on
natural frequencies and mode shapes are then analyzed. It is shown that the study results can be
applied to other FGMs as well as more complex microbeam structures.
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1. INTRODUCTION

Functionally Graded Materials (FGMSs) represent a new generation of inhomogeneous
composites that have garnered significant interest. Their unique thermo-mechanical properties
make them versatile for various applications across industries, including aircraft, biomedical
products, space vehicles, and more. Micro—Electro-Mechanical Systems (MEMS) are the new
field in which FGMs have been utilized to achieve the desired performance. Micro-sized
structures such as plates, sheets, beams, and framed structures are widely used in the MEMS
devices, for example, electrically actuated devices, atomic force microscopes, etc.

Classical mechanical theories fail to provide satisfactory solutions for micro elements due
to their inability to account for size-effects at the micro/nano scale. The Modified Couple Stress
Theory (MCST) [35], which uses only one material length scale parameter to capture the size-
dependent behaviour of structures and employs only the symmetric part of the couple stress
tensor as a suitable measure of the continuum micro-rotation, has been chosen to analyse
microstructures.
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It is well known that cracks lead to a decrease in the stiffness and an increase in the
flexibility of a structure. In microstructures, damages or cracks can occur due to the absence of
atoms [18] or by thermal fabrication process [17]. The fundamental results of vibration analysis
have been obtained more extensively for intact FGM microstructures than for cracked
microstructures. The complexity of the problems in either fracture mechanics of FGMs [2, 3], as
well as in the dynamics of cracked FGM microstructures with both varying material and
geometry, is perhaps the major reason.

To date, there have been limited studies on the bending, vibrations and buckling of
homogeneous cracked microbeams. Zhou et al. [37] analysed the dynamic characteristics of
electro-statically actuated microbeams with slant cracks using the classical EBT. Utilizing the
MCST combined with analytical or semi-analytical methods, Sourki and Hoseini [33] analysed
free vibrations of homogeneous cracked EBT microbeams. Khorshidi and Shariati [6, 21]
analysed the buckling and post-buckling of the cracked TBT microbeam. Wu et al. [34] studied
the vibrational power flow of a homogeneous TBT microbeam with a crack. Atci [11] studied
nonlinear vibrations of homogeneous cracked microbeams considering the longitudinal
elongation effects. Shaat et al. [30] investigated the vibration of cracked nanobeams made of
nanocrystalline materials based on Mindlin’s couple stress theory and Mori-Tanaka model for
the incorporation of the heterogeneous surface energy effects. Using FEM, Akbas [9]
investigated the bending of a cracked FGM microbeam with Hermite shape functions. He
analysed free vibration [8] and forced vibration of the cracked homogeneous [10] and FGM [7]
cantilever under the impulse force at the free end applying the Kelvin-Voigt damping model.
Kar and Srinivas [20] analysed transient responses of bi-directional FGM microbeams with edge
cracks resting on nonlinear elastic foundations subjected to thermal shock loads based on the
Mori-Tanaka model. Saimi et al. [28] examined the effects of cracks on the free vibrations of bi-
directional FG porous microbeams in the combination with Q3D beam theory.

It is worth noting that the elastic equivalent spring model of the crack is developed based
on the local flexibility matrix [12, 13, 26]. Zheng and Kessissoglou [5] demonstrated that the
local flexibility matrix is especially appropriate for the analysis of a cracked beam if one
employs an analytical and semi-analytical method, etc. However, the local flexibility matrix
disregards the influences of shearing forces on the opening type of the crack, rendering it less
accurate. The authors proposed to add an “overall additional flexibility matrix”, instead of the
“local additional flexibility matrix”, to the flexibility matrix of the corresponding intact beam
element to obtain the total flexibility matrix, and therefore the stiffness matrix. Compared with
analytical results, the new stiffness matrix obtained can give more accurate natural frequencies
than those resulting from using the local additional flexibility matrix.

In this work, free vibrations of FGM microbeams on a Winkler-Pasternak elastic
foundation are studied based on the MCST, the TBT and the Mori—Tanaka homo-genization
technique. Non-classical shape functions of the microbeam element are derived based on the
governing vibration equations for the FGM microbeam using the MCST and the TBT. Using
shape functions proposed, the stiffness matrix and the mass matrix of an intact microbeam are
identical to the stiffness matrix and the mass matrix in the case of a homogeneous microbeam or
a classical Timoshenko beam. The stiffness matrix of a cracked beam element obtained by
adding an overall additional flexibility matrix to the flexibility matrix of the corresponding intact
beam element can give more accurate natural frequencies. In addition, the influences of material,
crack, foundation, length scale parameters and slenderness ratio on the natural frequencies of
FGM microbeams are investigated in detail.
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2. GOVERNING EQUATIONS OF FGM TIMOSHENKO MICROBEAMS

Consider an FGM microbeam of length L, rectangular cross-section A=bxh (Fig. 1)
resting on a Winkler-Pasternak foundation. It is assumed that the material volume fraction of the
FGM microbeam varies along the thickness direction as follows [31]:

Vc: 14_5 ;Vm:]__ 14_5 1_ESESE (1)
2 h 2 h 2 h 2

where n is the volume fraction index, and z is the coordinates from the mid-plane of the beam.
According to the Mori—Tanaka homogenization technique [25], the effective bulk modulus K
and shear modulus G can be calculated by

K-K, _ V, .G-G, _ V,

Ko-Kp 1+@Q-V)(K, -K,)/ (K, +4G,/3)'G, -G, 4, 1-V)(G, -G,)

G, +G, (9K, +8G, )/ (6K, +12G,)
where the subscripts m and ¢ denote metal and ceramic materials, respectively. Effective
material properties of the FGM microbeam such as Young’s modulus E, Poisson’s ratio v and
mass density p can be determined as follows:

)

9KG 3K-2G
E(Z2)=——; V(1) =————=2: p(2) = p.V. + p,V,; 3
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Figure 1. An FGM microbeam on a Winkler-Pasternak elastic foundation.

The displacements at a point on the cross-section of the Timoshenko beam can be
represented as follows:

u(x, z,t) =u,(x,t) = (2 —hy)0(x, t); w(x, z,t) = w,(x,t) 4)

where ug(x,t) and wy(x,t) are axial displacement and deflection of a point on the neutral axis,
respectively; hg is the distance from the neutral axis to x-axis; &x,t) is the rotation angle of the
cross-section. Applying the MCST, the deformation ¢, stress o, deviatoric couple stress m and
curvature x tensors can be expressed as follows:

6 = 2Gg + Atr(g)I; £=%[Vu - (Vu)T } m =2G(%y; y = %_V(Curlu) + (V(curlu))T } (5)

with the following nonzero components
2

5, = _ (-2, 21(%_9} Lo 20

OX oX 4{ ox°  oOx

' 6
OX 2
0w =(1+2G)e,; 0, = 2k Ge m, =2G(’y,,

(6)

xx; xz; O-yy =0, = j"F"xx;
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where A and ks are the Lame’s coefficient and the shear correction coefficient (ks=5/6 for a
rectangular cross-section).

From Egs. (4)-(6), the strain energy and kinetic energy variation of the microbeam based on
the MCST can be obtained as follows [27]:

oU = “( OOy +20,0¢, +2M, 3y, )dAdX

o
>

_ Naéuo_M85¢9+Q85 Qé‘@—lY@ 10Y dow, b | 1 85W
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where N, M, Q, and Y are the axial normal force, the bending moment, the shear force, and the
couple moment, respectively:

0

N =[0,dA Q= [0, dAM =[(z-h;),dA Y = [m, dA ®)
A A A A
Applying Hamilton’s principle leads to the governing equations of vibration as follows:
52“0 82u0 0’0
Au A12 Iy 8t2 +1, ? =0
o° u 820 1 83w %6 o’u 0°6
A12 Azz A%s [ GX J kAss( j_llzat_zo"‘lzzyzo ©)
o’w, 00) 1 o'w 8°0 o°w,
ksAss(axo_&]__Ass [64 8X3j+q_lllat_20:0

where A1, App, A, Agzare the rigidities and 14, 13, 15, are the mass moments, respectively:

(AM,AZ,AH):j[/l(z)JrZG(z)](l,z—ho,(z—ho)z)dA; A, =[G (|M,|12,|22):jp(z)(1,z-ho,(z-ho)z)dA (10)
A A A

where

j 7)+2G(z sz/j[/l z)+2G(z)]dA (11)

A

3. SHAPE FUNCTIONS OF THE FGM TIMOSHENKO MICROBEAM ELEMENT

To avoid the shear-locking problem, the solution of the equilibrium equation is adopted to
interpolate the transverse displacement and rotation in derivation of the element stiffness and
mass matrix. Neglecting the external static load and accepting the neutral axis, the first equation
of (9) is uncoupled with the remaining equations. Thence, Eg. (9) can be rewritten as follows:
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29 A33£2 dw d’0 ( j d’w, dg) A (d'w d%
— +kA. | —2 -9 |=0k o7 sl Bl Y Y G
AZZ 4 | a¢ e A A dx>  dx 4 | dx*  dx® (12)

Setting the new variables:

dw,

=—2_¢0 $=—"\4+0 13

4 dx / dx 13)
and integrating the second equation of (12) yield:

(? d? ¢
Ay =228 19
Using the first equation of (12) we obtain:
[2 d* g 1 A33C2 d? d'¢ ¢ (15)
8k dx* 2 A, Jdx* A,

where c; is an integration constant. Introducing the nondimensional variable x =x/L and
neglecting the first term because of (¢/ L)2 ~ 0, Eq. (13) can be rewritten as follows:

d? 2C
(lra) 22 _ 28 (16)
L*dx? A,
where
KZ
o= A (17)
Ay
Integrating Eq. (16) and substituting into Eq. (14) yield:
C, ) _ ¢ l+a/2
=——X"+C,X+Cy ¥ = —_— 18
? A, (1+a) AT 7 kA, l+a a8
and
_1 4y +CX+C, - G Lraj2 W, = ! S N I +cx+——/2 X[+¢, (19)
A22(1+ @) kA, l+a 2| 3A,(1+a) 2 kA, l+a
Using the boundary conditions
Wy (x=0)=w; 8(x=0)=6; w,(x=L)=w,;0(x=L)=6, (20)
Four integration constants ¢y, C,, Cs, C4Can be determined as follows:
1 _
- Azj( +a)(—12w1—6L6?1+12w2—6L¢92);c4 _we =28 L g G 1rai2p,
L'(1+¢) L A,(l+a) kA, (1+a)
where @ is the ratio of the bending to the shear stiffness of the FGM microbeam element:
12
o= P (14 ( ] (22)
AL 2

¢ is identical to the coefficient proposed by Kahrobaiyan et al. in [19] in the case of the
homogeneous microbeam element. Substituting the integration constants from Eqg. (21) into Eq.
(19) yields the shape functions of the FGM Timoshenko microbeam element as follows:
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These non-classical shape functions are identical to shape functions proposed by [14-16, 19,
36] for the homogeneous Timoshenko microbeam element in the case of A,, = El; A, =GA.

Letting (=0 yields the shape functions of the classical Timoshenko beam element [22]. Letting
¢ =0 yields the Hermite shape functions and its derivative.

4. STIFFNESS AND MASS MATRIX OF AN INTACT FGM MICROBEAM ELEMENT

The microbeam is divided into several two-node beam elements with the nodal
displacements d:{ui,wi,ei,uj,wj,Hj}T where i and j denote the left and right nodes,

respectively. The displacements and rotation angles of the FGM Timoshenko microbeam
element can be interpolated as follows:

u) [N 0 0 N 0 0 N
wb=l 0 NY NY O N NM{u ow g u w6 =[N"[d (29
0 0 N N/ O N N/ N°
where N;'; N, are Lagrange’s shape functions of the axial displacement:
NY=1-Xone =X (25)
L L

Using the shape functions (24) and applying the well-known procedures of FEM [38], we
obtain the stiffness and the mass matrices of the intact FGM Timoshenko microbeam element
based on the MCST rested on the Winkler-Pasternak elastic foundation as follows:

T T T T
A ONY )} ON“ _A ONY ) ON® N ON® ) ON" “A ON° @
Uoox ) ox 21l ox ) ox ox ) ox 2 ox | ox

Kb:JL. ] dx;
° kAB{N ] [W X ] Aw(@ N””ﬁN“J (azNzwﬁN"]
OX 4 | ox*  ox Ox OX
KWZTKW(NW)T NYdx; K, jK [aal\i ] aa'\'—xwdx; (26)
M:!{In[(N“) N“+(N") N }—Ilz[(N“)TN (N°) N"}HZZ(N“)T Ne}dx,
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where Ky, K, are the Winkler-Pasternak elastic foundation coefficients. The stiffness matrix of
the microbeam element can be rewritten as follows:

K=K, K, + K, (27)
The stiffness matrix (27) is identical to the stiffness matrix proposed by Dehrouyeh-
Semnani and Bahrami [14] in the case of the homogeneous microbeam element. Letting (=0
yields the stiffness matrix of the classical Timoshenko beam element [22]. Letting ¢=0 yields
the stiffness matrices of the classical beam element rested on the Winkler-Pasternak foundation.
The mass matrix of the microbeam (26) is identical to the mass matrix proposed by [15, 19] for
the homogeneous Timoshenko microbeam in the case of A, = El; A, =GA. Letting (=0
yields the mass matrix of the classical Timoshenko beam element [22].

5. STIFFNESS MATRIX OF A CRACKED MICROBEAM ELEMENT

Figure 2 shows a cracked microbeam element under the local coordinate. The relationship
between the nodal displacements (u,v,#) and forces (U,V, ®) can be expressed as [5].

uj -4 Uj L/ An +Cy —Cp —Cps Uj
Vi —Vi— Lei = Ctotal Vj = —Cy L3/3A22 +Cy L2/2A22 +Cy Vj (28)
ej - 9. ®j —Cyy L2/2A22 +GCy, L/Azz +Cy3 ®j
where Cyq iS the total flexibility matrix and
alhq 2 alhq 2
= 25 [ E AR ()0 6 = o [ E AR (R, (006 6, =6l ¢ =G,
b bh 3 (29)
272, 36'(:2 a/hl_ﬂz ) a/hl_ﬂz ) . 7272_ a/hl_#z )
C,) zb[hz ! z XF2 (x)dx + l‘ : XFZ2 (X)dx |; ¢,y = = l 2 XF; (X )dx

F1, F2, Fy are the correction factors for stress intensity factors:

lc

Vi, Vi ViV,

F*
Ii [y a
0:.0; —>T e — )6,,0;
| IQi’Ui O " ®. UJ'UDJ J
- L )
Figure 2. A cracked FGM microbeam.
F () [9(rs2) 0.752 +2.02s +0.37(1-sin(7s/2))’
1 =

7s/2 cos(7s/2)

N CTCE) 0.923+0.199(1-sin(7zs/2))’ (30)
2N ws/2 cos(zs/2)

1.122 -0.561s + 0.085s* + 0.180s®> a
Fu(s): \/1—8 yS=—

The stiffness matrix K. Of a cracked beam element can be obtained from the total
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flexibility matrix as follows [5, 29]:

K . =LC: L' (31)

crack total

where

1 0 0 100
L'=|0 -1 -L 0 1 0 (32)
0O 0 -1 001

Finally, the discrete on FEM formulation for free vibration problems of the cracked FGM
Timoshenko microbeam based on the MCST can be expressed as follows:

[M]{B} +[K]{D} = {0} @)

where D, M and K are the global displacement vector, mass and stiffness matrices of the
microbeam structure, respectively. Eq. (33) leads to the following characteristic equation:

det| K—’M|=0 (34)
where w is the natural frequency of the cracked FGM Timoshenko microbeam structure.
6. NUMERICAL RESULTS AND DISCUSSION

For convenience, the non-dimensional frequencies and elastic foundation coefficients can

be defined:
ol [p K, L K,L*  bh’
ﬂ, -1 —m’ k = w ’k = P , I = —
' h E, " E,l P E.l 12 (35)

The first comparison of the fundamental frequency calculated by the proposed FEM using
10 elements for the simply-supported intact FGM microbeam with those of Reddy [27], is shown
in Table 1. Good agreements are also obtained for the first three nondimensional frequencies of
the simply-supported intact FGM microbeam with those of Reddy.

Table 1. Comparisons of the first three frequencies of the FGM microbeam.

Reddy [27] Present
n I/h A A2 A3 A1 A2 As
Classical | 9.83 | 38.82 | 85.63 | 9.8283 | 38.9271 | 86.8136
0.2 10.65 | 42.06 | 92.78 | 10.6428 | 42.0926 | 93.7006
0.4 12.80 | 50.52 | 111.34 | 12.7715 | 50.3129 | 111.4473
0.6 15.73 | 62.01 | 136.39 | 15.6709 | 61.3618 | 134.9213
0.8 19.08 | 75.05 | 164.51 | 18.9669 | 73.6679 | 160.4385
1.0 22.66 | 88.84 | 193.82 | 22.4570 | 86.3428 | 188.8944
Classical | 8.67 | 34.29 | 75.59 | 8.6709 | 34.4287 | 77.0280
1 0.2 9.59 | 37.93 | 93.84 | 9.5872 | 38.0123 | 91.8873
0.4 11.93 | 47.16 | 105.15 | 11.9133 | 47.0513 | 104.5548
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0.6 15.04 | 59.35 | 130.77 | 14.9892 | 58.8449 | 129.7974

0.8 18.52 | 72.91 | 160.69 | 18.4185 | 71.7242 | 156.6851

1.0 22.28 | 87.42 | 190.99 | 22.0072 | 84.8308 | 188.1667
Classical | 10.28 | 40.47 | 88.80 | 10.2914 | 40.7171 | 90.6812

0.2 11.07 | 43.56 | 95.58 | 11.0708 | 43.7379 | 97.2310

10 0.4 13.17 | 51.70 | 113.38 | 13.1274 | 51.6587 | 114.2740
0.6 16.00 | 62.88 | 137.66 | 15.9584 | 62.4185 | 137.0611

0.8 19.30 | 75.67 | 165.14 | 19.2007 | 74.4929 | 162.0250

1.0 22.92 | 89.57 | 194.63 | 22.6500 | 86.9891 | 189.0572

Table 2 presents comparisons of the nondimensional fundamental frequency ratios between
the cracked homogeneous beam and the intact one, which are calculated according to the local
flexibility matrix proposed by Qian et al. [26] and the overall additional flexibility matrix
proposed by Zheng and Kessissoglou [5], with the results published by Aydin [1] and Lien et al.
[23], which are calculated according to the rotational spring model. The obtained numerical
results show good agreement with previously announced results.

Table 2. Comparisons of the fundamental frequency ratios of the beam with a single crack.

Cantilever Xi/L=0.2 | x,/L=0.4 | x,/L=0.6
Aydin 0.9906 0.9958 0.9982
Lien et al. 0.9900 0.9960 0.9980
Present (Qian et al.) 0.9930 0.9971 0.9992
Present (Zheng and Kessissoglou) 0.9902 0.9960 0.9989
Clamped-Clamped X/L=0.1 | x/L=0.3 | xo/L=0.4
Aydin 0.9971 0.9963 0.9943
Lien et al. 0.9970 0.9960 0.9930
Present (Qian et al.) 0.9960 0.9991 0.9966
Present (Zheng and Kessissoglou) 0.9944 0.9988 0.9953
Simple-Simple X/L=0.2 | X,/L=0.4 | x/L=0.7
Aydin 0.9959 0.9916 0.9985
Lien et al. 0.9950 0.9910 0.9980
Present (Qian et al.) 0.9978 0.9942 0.9956
Present (Zheng and Kessissoglou) 0.9970 0.9918 0.9939

For the case study, the free vibrations of the FGM cracked microbeam of the rectangular
cross-section with b = h and length L = 20h, resting on the Winkler-Pasternak elastic foundation
with coefficients k,, and k,, are studied. The constituents of the microbeam include aluminum:
En= 70 GPa; g, = 2702 kg/m® vy, = 0.3; and ceramic: E. = 427 GPa; p, = 3100 kg/m®; v,= 0.17
[32]. The material length scale parameter of FG microbeams is taken as | = 15 pum in this study.
The first two frequency ratios between the non-dimensional frequencies of the cracked FGM
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microbeam and the intact ones will be considered, concerning the actual neutral axis position for
different cracks, size effects, materials, geometry, etc.
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Figure 3. Changes of the first two frequency ratios of the simply supported ends microbeam considering
the crack position moving along the beam length with different L/h ratios : (a) First frequency ratio,
(b) Second frequency ratio.

Figure 3 shows the changes of the first two frequency ratios of the simply supported ends
microbeam considering the crack position moving along the beam length with different L/h
ratios: L/h = 10 (black, solid line), L/h = 20 (red, dashed line), and L/h = 30 (blue, dash-dot
line). The height of the microbeam is equal to h = 30 um, so the ratio of the material length scale
parameter to the height is equal to 0.5 (I’h = 0.5). The depth of the crack is equal to 20 % of the
height of the beam (a/h = 0.2), and the volume fraction index is equal to 3. It is shown that the
non-dimensional frequencies of the cracked microbeam decrease remarkably when the length of
the beam decreases and the crack is at some positions in the beam, for example, x/L = 0.5 for the
first frequency ratio. The decrease of the lower frequency is more distinct than the decrease of
the higher frequency. In the following studies, the length of the microbeam L = 20h will be
considered in detail.
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Figure 4. Changes of the first two frequency ratios of the simply supported ends microbeam considering
the crack position moving along the beam length with different material length scale parameters:

(a) First frequency ratio, (b) Second frequency ratio
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Table 3. Critical points for the first three frequencies with different boundary conditions.

Hot spot Critical point
Boundary First Second Third First Second Third
condition frequency | frequency | frequency |frequency| frequency | frequency
(xIL) (xIL) (x/L) (xIL) (xIL) (x/L)
Simply-supported ) 0.25; 0.15; 0.5; i ) ) )
ends 0.5; 0.75. 0.85: 0.5; 0.33;0.66;
. AL 0;0.3; 0; 0.2; 0.5; 0.22; 0.13; 0.5; 0.1; 0.35;
Clampedends | 0;0.50; 1 | o'z 0.8; 1; 0.78; 0.87; | 0.65;0.9;
Clamped-free 0; 0; 0.54; 000731 - 0.22; 813
Clamped-simply . ) 0; 0.33; 0; 0.22; , , .1 0.1;0.38;
supported 0;0.63; 0.79; 0.53; 0.86 0.26; 0.14;0.55; 0.69;

1st freq. ratio
o
©
(<]

n=0
— — —n=3
————— n=10

|

0 0.1 0.2 0.3

0.4 0.5 0.6
Crack position

0.7 0.8 0.9

)

2nd freq. ratio
o o o o o o
0 (=} [{=] [(=} 0 o
S (5] (<] ~ oo ©

el
©
@

n=0
— — —n=3

————— n=10

S
©
N

0

L L L
0.1 0.2 0.3

. A
0.4 0.5 0.6
Crack position

L
0.7

L L
0.8 0.9

0

Figure 5. Changes of the first two frequency ratios of the simply supported ends microbeam considering
the crack position moving along the beam length with different volume fraction indices: (a) First
frequency ratio, (b) Second frequency ratio.

Figure 4 presents the changes of the first two frequency ratios of the simply supported ends
microbeam considering the crack position moving along the beam length in the case of the
height h = 30 um and different material length scale parameters | = 0, 15, 30 um corresponding
to I/h = 0 (black, solid line), I/h = 0.5 (red, dashed line), and I/h = 1 (blue, dash-dot line),
respectively. The depth of the crack is equal to 20 % of the height of the beam (a/h = 0.2), and
the volume fraction index is equal to 3. It is shown that the non-dimensional frequencies of the
cracked microbeam decrease remarkably when the material length scale parameter increases and
the crack is at some positions in the beam, called hot spots for a given frequency, such as x/L =
0.5 for the first frequency ratio, x/L = 0.25, 0.75 for the second frequency ratio, etc. Moreover,
there exist positions in the beam, called critical points for a given frequency, at which the crack
makes nondimensional frequencies unchanged or changes very little. These hot spot and critical
point positions of FGM cracked microbeams coincide with the ones of homogeneous [4] and
FGM macrobeams [23] or nanobeam [24] for different boundary conditions (Table 3). It is noted
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that nondimensional frequencies of macrobeams or nanobeams are unchanged at critical points
while nondimensional frequencies of microbeams can be unchanged or changed very little. In
particular, the positions of critical points remain independent of the number of cracks. They are
useful information for detecting cracks in cases where the specific frequency does not change or
changes only slightly.

Figure 5 illustrates the variations in the first two frequency ratios of the microbeam as the
crack position moves along the beam length. The curves represent different volume fraction
indices: n = 0 (black, solid line), n = 3 (red, dashed line) and n = 10 (blue, dash-dot line). The
depth of the crack is set to 20 % of the height of the beam, and the ratio of the material length
scale parameter to the height of the microbeam is fixed at 0.5 (I/h = 0.5). The results indicate a
significant decrease in the nondimensional frequencies of the cracked FGM microbeam as the
volume fraction index decreases. In other words, the changes in nondimensional frequencies of
the cracked homogeneous microbeam corresponding to n = 0 are more remarkable than the ones
of FGM microbeams. The variations in frequencies of the cracked microbeam with the different
volume fraction indices contrast with those observed in FGM macrobeam [23] or nanobeam
[24]. Furthermore, Table 3 provides the positions of hot spots and critical points corresponding
to a given frequency. The same conclusions are met in the microbeam with the other boundary
conditions such as clamped ends, clamped—free@:}and clamped-simply supported. In the following
studies, the only simply supported ends microbeams are investigated for the sake of simplicity.
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Figure 6. Changes of the first two frequency ratios of the simply supported ends microbeam considering
the crack position moving along the beam length with different ratios between modulus of Young’s
elasticity of ceramic and metal materials: (a) First frequency ratio, (b) Second frequency ratio.

Figure 6 shows the changes of the first two frequency ratios of the microbeam considering
the crack position moving along the beam length with different ratios between Young’s modulus
of elasticity of ceramic and metal materials: E/E,, = 0.1 (black, solid line), E./E,, = 6.1 (red,
dashed line) and E./E,, = 60 (blue, dash-dot line), respectively. The depth of the crack is equal to
20 % of the height of the beam, the volume fraction index is equal to 3 and the ratio of the
material length scale parameter to the height of the microbeam is equal to 0.5 (I/h = 0.5). It is
shown that the non-dimensional frequencies of the cracked microbeam decrease remarkably at
hot spots in the beam when the ratio between Young’s modulus of elasticity of the ceramic and
the metal materials decreases. The changes of frequencies of the cracked microbeam with
different ratios between Young’s modulus of elasticity of the ceramic and the metal materials are
contrary to the ones of the FGM macrobeam [23] or the nanobeam [24].
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Figure 7 presents the changes of the first two frequency ratios of the microbeam
considering the crack position moving along the beam length with different ratios between
Poisson’s coefficients of ceramic and metal materials: v¢/v, = 0.1 (black, solid line), v /vy, =
0.17/0.3 (red, dashed line) and v /v, = 1.2 (blue, dash-dot line). The depth of the crack is equal
to 20 % of the height of the beam, the volume fraction index is equal to 3 and the ratio of the
material length scale parameter to the height of the microbeam is equal to 0.5 (I/lh = 0.5). It is
shown that the nondimensional frequencies of the cracked microbeam decrease remarkably at
hot spots in the beam when the ratio between Poisson’s coefficients of the ceramic and the metal
materials decreases while the influence of the change of the Poisson’s coefficient on vibration
frequencies at remaining positions can be ignored. It is noted that the influence of the change of
Poisson’s coefficient on vibration frequencies of the FGM macrobeam or nanobeam can be

ignored.
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Figure 8. Changes of the first two frequency ratios of the simply supported ends microbeam considering
the crack position moving along the beam length with different ratios between the crack depth and the
beam height: (a) First frequency ratio, (b) Second frequency ratio.
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Figure 8 illustrates the changes of the first two frequency ratios of the simply supported
ends microbeam considering the crack position moving along the beam length with different
ratios between the depth of the crack and the height of the beam: a/h = 0.1 (black, solid line),
a/h = 0.2 (red, dashed line), and a/h = 0.3 (blue, dash-dot line). The volume fraction index is
equal to 3 and the ratio of the material length scale parameter to the height of the microbeam is
equal to 0.5 (I/h = 0.5). It is shown that the nondimensional frequencies of the cracked
microbeam decrease remarkably when the depth of the crack increases. The changes in
frequencies of the cracked FGM microbeam with different crack depths are similar to the ones of
the homogeneous beam [4] and the FGM macrobeam [23] or the hanobeam [24].
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Figure 10. Changes of the first two frequency ratios of the simply supported ends microbeam considering
the crack position moving along the beam length with different Pasternak’s elastic foundation coefficients:
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Figure 9 shows the changes of the first two frequency ratios of the simply supported ends
microbeam considering the crack position moving along the beam length with different Winkler
elastic foundation coefficients: k,=0 (black, solid line), k,=50 (red, dashed line), and k,=100
(blue, dash-dot line). The depth of the crack is equal to 20 % of the height of the beam, the
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volume fraction index is equal to 3 and the ratio of the material length scale parameter to the
height of the microbeam is equal to 0.5 (I/h=0.5). It is shown that the nondimensional
fundamental frequency of the cracked microbeam resting on the Winkler elastic foundation
decreases remarkably when the Winkler foundation coefficient decreases. However, the
influence of cracks on the higher frequencies of the FGM microbeam resting on the Winkler
elastic foundation can be ignored.

Figure 10 presents the changes of the first two frequency ratios of the simply supported
ends microbeam considering the crack position moving along the beam length with different
Pasternak’s elastic foundation coefficients: k,=0 (black, solid line), k,=25 (red, dashed line), and
k,=50 (blue, dash-dot line). The depth of the crack is equal to 20 % of the height of the beam, the
volume fraction index is equal to 3 and the ratio of the material length scale parameter to the
height of the microbeam is equal to 0.5 (I/h=0.5). It is shown that the non-dimensional
frequencies of the cracked microbeam resting on the Pasternak elastic foundation decrease
remarkably when the Pasternak foundation coefficient decreases. The changes in frequencies of
the cracked microbeam with the Pasternak foundation coefficient are contrary to the ones of the
FGM macrobeam or the nanobeam.
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Figure 11. Changes of the first two frequency ratios of the simply supported ends microbeam considering
the equidistant crack number increasing from 1 to 9 and different material length scale parameters:
(a) First frequency ratio, (b) Second frequency ratio.

Figure 11 shows the changes of the first two frequency ratios of the simply supported ends
microbeam considering the equidistant crack number increasing from 1 to 9 and different
material length scale parameters: I1/h = 0 (black, solid line), I/h = 0.5 (red, dashed line), and I/h =
1 (blue, dash-dot line). The depth of the crack is equal to 20 % of the height of the beam, the
volume fraction index is equal to 3 and the ratio of the material length scale parameter to the
height of the microbeam is equal to 0.5 (I/h = 0.5). Moreover, the Winkler-Pasternak elastic
foundation coefficients, k, and k,, are equal to 0. It is shown that the non-dimensional
frequencies of the cracked FGM microbeam decrease remarkably when the number of cracks
and the material length scale parameter increase.

5. CONCLUSIONS

In this paper, free vibrations of cracked FGM Timoshenko microbeams resting on the
Winkler-Pasternak elastic foundation based on the MCST are presented. Material properties of
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the beam vary throughout the thickness according to the power distribution and the Mori—
Tanaka homogenization technique. Non-classical shape functions are proposed to obtain
stiffness and mass matrices of the intact FGM Timoshenko microbeam. The stiffness matrix of
the cracked beam element obtained by adding an overall additional flexibility matrix to the
flexibility matrix of the corresponding intact beam element can give more accurate natural
frequencies. Comparisons of the calculated results with published results are provided to validate
the reliability of the proposed FEM model. Thenceforth, the influence of material length scale,
geometry, materials, crack parameters and boundary conditions on the free vibration frequencies
of multiple cracked FGM microbeams is studied. The calculated results show that the
frequencies of the cracked FGM microbeam decrease remarkably when:

a) The ratio of the material length scale parameter to the height of the microbeam (I/h), the
ratio of the crack depth to the height of the microbeam (a/h), and the number of cracks increase.

b) The ratio of the length to the height of the beam (L/h), the volume fraction index (n), the
ratio of Young’s modulus of elasticity of the ceramic and the metal (EJ/E,), the ratio of
Poisson’s coefficient of the ceramic and the metal (v./v;,), and Winkler-Pasternak elastic
foundation coefficients (k., k) decrease. Nevertheless, the influence of the ratio of Poisson’s
coefficient (v+/vy) and Winkler-Pasternak foundation coefficients (k. Ky) is not so distinct as the
influence of the ratio of the length to the height of the beam (L/h), the material length scale
parameter (I/h), the volume fraction index (n), the ratio of Young’s modulus of elasticity of the
ceramic to the metal materials (E./Ey,), and the depth of the crack (a/h).

c) The decrease of lower frequencies is more obvious than higher frequencies. Moreover,
the decrease in higher frequency caused by the depth of cracks is more remarkable than the ones
caused by the material length scale parameter. The fundamental frequency of cracked FGM
microbeams is most sensitive to the depth of the crack.

d) The positions of hot spots and critical points in multiple cracked FGM microbeams not
only align with those in homogeneous and FGM macrobeams but also remain unaffected by the
material length scale parameter and the number of cracks in the beam.

All the aforementioned observations provide valuable insights for identifying cracks in
multiple cracked FGM microbeams through measurements of free vibration frequencies or mode
shapes. This study can be further extended to include other types of FGMs and a wider range of
microstructures.
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