Investigating performance of full-cell using NaFe0.45Cu0.05Co0.5O2 cathode and hard carbon anode

Hoang Van Nguyen , Minh Le Nguyen, Phuong Hue Tran, Man Van Tran, Phung My Loan Le
Author affiliations

Authors

  • Hoang Van Nguyen Applied Physical Chemistry Laboratory (APCLab), University of Science, VNUHCM, Viet Nam
  • Minh Le Nguyen Applied Physical Chemistry Laboratory (APCLab), University of Science, VNUHCM, Viet Nam
  • Phuong Hue Tran Applied Physical Chemistry Laboratory (APCLab), University of Science, VNUHCM, Viet Nam
  • Man Van Tran Applied Physical Chemistry Laboratory (APCLab), University of Science, VNUHCM, Viet Nam
  • Phung My Loan Le Applied Physical Chemistry Laboratory (APCLab), University of Science, VNUHCM, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16040

Keywords:

full-cell, hard carbon, Na-ion batteries, NaFe0.45Cu0.05Co0.5O2, presodiated

Abstract

We evaluated methods aimed at improving the performance of full-cell including:  i) Presodiating HC by discharging to 0.1 V in half-cell; ii) Presodiating HC by contacting with Na metal; iii) Activating by low current charging at a rate of C/20 initially, iv) Constant current charging to a cutoff voltage of 3.95 V then hold the voltage for 6 hours. The results showed that the cell being charged by low current density did not exhibit feasible work while the cell (iv) displayed an improvement in capacity while the cell (i) and the cell (ii) both are better in terms of Coulombic efficiency.

Downloads

Download data is not yet available.

References

Amine K., Kanno R. and Tzeng Y. - Rechargeable lithium batteries and beyond: Progress, challenges, and future directions, MRS Bull. 39 (2014) 395-401. https://doi.org/10.1557/mrs.2014.62.

Nayak P.K., Yang L., Brehm W., and Adelhelm P. - From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises, Angew. Chem. Int. Ed. 57 (2018) 102-120. https://doi.org/10.1002/anie.201703772.

Nitta N., Wu F., Lee J.T. and Yushin G. - Li-ion battery materials: present and future, Mater. Today 18 (2015) 252-264. https://doi.org/10.1016/j.mattod.2014.10.040.

Niu Y. B., Yin Y. X.. and Guo Y. G. - Nonaqueous sodium‐ion full cells: Status, strategies, and prospects, Small. 15 (2019) 1900233.https://doi.org/10.1002/smll.201900233.

Hwang J. Y., Myung S. T. and Sun Y. K. - Sodium-ion batteries: present and future, Chem. Soc. Rev. 46 (2017) 3529-3614. https://doi.org/10.1039/C6CS00776G.

Yabuuchi N. , Kubota K. , Dahbi M. and Komaba S. - Research development on sodium-ion batteries, Chem. Rev. 114 (2014) 11636-11682. https://doi.org/10.1021/cr500192f.

Liu Q., Hu Z., Chen M., Zou C., Jin H., Wang S., Chou S. and DouS. - Recent progress of layered transition metal oxide cathodes for sodium‐ion batteries, Small. 15 (2019) 1805381. https://doi.org/10.1002/smll.201805381.

Fang Y., Xiao L., Chen Z., Ai X., Cao Y. and Yang H. - Recent advances in sodium-ion battery materials, Electrochem. Energy Rev. 1 (2018) 294-323. https://doi.org/10.1007/s41918-018-0008-x.

Liu Y., Liu X., Wang T., Fan L. Z. and Jiao L. - Research and application progress on key materials for sodium-ion batteries, Sustain. Energy Fuels. 1 (2017) 986-1006. https://doi.org/10.1039/C7SE00120G.

Kim H., Kim H., Ding Z., Lee M.H., Lim K., Yoon G. and Kang K. - Recent progress in electrode materials for sodium-ion batteries, Adv. Energy Mater. 6 (2016) 1600943. https://doi.org/10.1002/aenm.201600943.

Wang H., Liao X. Z., Yang Y., Yan X., He Y. S., and Ma Z. F. - Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries, J. Electrochem. Soc. 163 (2016) A565-A570. https://doi.org/10.1149/2.0011605jes.

Jeong M., Lee H., Yoon J. and Yoon W. S. - O3-type NaNi1/3Fe1/3Mn1/3O2 layered cathode for Na-ion batteries: Structural evolution and redox mechanism upon Na (de) intercalation, J. Power Sources. 439 (2019) 227064.

https://doi.org/10.1016/j.jpowsour.2019.227064.

Zhou D., Huang W., Zhao F. and Lv X. - The effect of Na content on the electrochemical performance of the O3-type NaxFe0.5Mn0.5O2 for sodium-ion batteries, J. Mater. Sci. 54 (2019) 7156–7164. https://doi.org/10.1007/s10853-018-03277-8.

Yoshida H., Yabuuchi N. and Komaba S. - NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries, Electrochem. Commun. 34 (2013) 60-63. https://doi.org/10.1016/j.elecom.2013.05.012.

Thorne J. S., Dunlap R. A., and Obrovac M. N. - Structure and electrochemistry of NaxFexMn1-xO2 (1.0≤ x≤ 0.5) for Na-ion battery positive electrodes, J. Electrochem. Soc. 160 (2013) A361-A367. https://doi.org/10.1149/2.058302jes.

Yabuuchi N., Kajiyama M., Iwatate J., Nishikawa H., Hitomi S., Okuyama, R., Usui R., Yamada Y. and Komaba S. - P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nat. Mater. 11 (2012) 512-517. https://doi.org/10.1038/nmat3309.

Yao H. R., Wang P. F., Wang Y., Yu X., Yin Y. X., and Guo Y. G. - Excellent comprehensive performance of Na-based layered oxide benefiting from the synergetic contributions of multimetal ions, Adv. Energy Mater. 7 (2017) 1700189. https://doi.org/10.1002/aenm.201700189.

Mariyappan S., Marchandier T., Rabuel F., Iadecola A., Rousse G., Morozov A. V., Abakumov A. M., and Tarascon J. M. - The role of divalent (Zn2+/Mg2+/Cu2+) substituents in achieving full capacity of sodium layered oxides for Na-ion battery applications, Chem. Mater. 32 (2020) 1657-1666. https://doi.org/10.1021/acs.chemmater.9b05205.

Yang L., Li X., Liu J., Xiong S., Ma X., Liu P., Bai J., Xu W., Tang Y., Hu Y. Y., Liu M. and Chen H. - Lithium-doping stabilized high-performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries, J. Am. Chem. Soc. 141 (2019) 6680-6689. https://doi.org/10.1021/jacs.9b01855.

Rong X., Qi X., Lu Y., Wang Y., Li Y., Jiang L., Yang K., Gao F., Huang X., Chen L., and Hu Y. S. - A new Tin-based O3-Na0.9[Ni0.45-x/2MnxSn0.55-x/2]O2 as sodium-ion battery cathode, J. Energy Chem. 31 (2019) 132-137.

https://doi.org/10.1016/j.jechem.2018.05.019.

Li J., Wang J., He X., Zhang L., Senyshyn A., Yan B., Muehlbauer M., Cao X., Vortmann-Westhoven B., Kraft V., Liu H., Luerenbaum C., Schumacher G., Paillard E., Winter M., and Li J. - P2-Type Na0.67Mn0.8Cu0.1Mg0.1O2 as a new cathode material for sodium-ion batteries: Insights of the synergetic effects of multi-metal substitution and electrolyte optimization, J. Power Sources. 416 (2019) 184-192.

https://doi.org/10.1016/j.jpowsour.2019.01.086.

Van Hoang N., Minh Le N., Hue Phuong T., Van Man T., Nhan Thanh T. and My Loan Phung L. - Cu-Doped NaCu0.05Fe0.45Co0.5O2 as promising cathode material for Na-ion batteries: Synthesis and characterization, J. Solid State Electrochem. 25 (2020) 1-9. https://doi.org/10.1007/s10008-020-04851-4.

Chen X., Zheng Y., Liu W., Zhang C., Li S., Li J. - High-performance sodium-ion batteries with a hard carbon anode: transition from the half-cell to full-cell perspective, Nanoscale. 11 (2019) 22196-22205. https://doi.org/10.1039/C9NR07545C.

Xie F., Xu Z., Guo Z., and Titirici M.-M. - Hard carbons for sodium-ion batteries and beyond, Prog. Energy. 2 (2020) 042002. https://doi.org/10.1088/2516-1083/aba5f5.

Hou H., Qiu X., Wei W., Zhang Y., and Ji X. - Carbon anode materials for advanced sodium-ion batteries, Adv. Energy Mater. 7 (2017) 1602898.

Jamesh M.I. and Prakash A.S. - Advancement of technology towards developing Na-ion batteries, J. Power Sources. 378 (2018) 268-300.

https://doi.org/10.1016/j.jpowsour.2017.12.053.

Kubota K., Asari T., Yoshida H., Yaabuuchi N., Shiiba H., Nakayama M., and Komaba S. - Understanding the structural evolution and redox mechanism of a NaFeO2-NaCoO2 solid solution for sodium-ion batteries, Adv. Funct. Mater. 26 (2016) 6047-6059. https://doi.org/10.1002/adfm.201601292.

Irisarri E., Ponrouch A., and Palacin M. R. - Review-Hard carbon negative electrode materials for sodium-ion batteries, J. Electrochem. Soc. 162 (2015) A2476-A2482. https://doi.org/10.1149/2.0091514jes.

Chen G., Liu Z., and Su H. - An optimal fast-charging strategy for lithium-ion batteries via an electrochemical-thermal model with intercalation-induced stresses and film growth, Energies. 13 (2020) 2388. https://doi.org/10.3390/en13092388.

Wang Z., Wang Y., Rong Y., Li Z., and Fantao L. - Study on the optimal charging method for lithium-ion batteries used in electric vehicles, Energy Procedia. 88 (2016) 1013-1017. https://doi.org/10.1016/j.egypro.2016.06.127.

Wu X., Hu C., Du J., and Sun J. - Multistage CC-CV charge method for Li-ion battery, Math. Probl. Eng. 2015 (2015) 1-10. https://doi.org/10.1155/2015/294793.

Zhang X., Fan C., and Han S. - Improving the initial Coulombic efficiency of hard carbon-based anode for rechargeable batteries with high energy density, J. Mater. Sci. 52 (2017) 10418-10430. https://doi.org/10.1007/s10853-017-1206-3.

Wang H., Xiao Y., Sun C., Lai C., and Ai X. - A type of sodium-ion full-cell with layered NaNi0.5Ti0.5O2 cathode and pre-sodiated hard carbon anode, RSC Adv. 5 (2015) 106519-106522. https://doi.org/10.1039/C5RA21235A.

Downloads

Published

21-04-2022

How to Cite

[1]
H. Van Nguyen, M. L. Nguyen, P. H. Tran, M. V. Tran, and P. M. L. Le, “Investigating performance of full-cell using NaFe<sub>0.45</sub>Cu<sub>0.05</sub>Co<sub>0.5</sub>O<sub>2</sub> cathode and hard carbon anode”, Vietnam J. Sci. Technol., vol. 60, no. 2, pp. 203–215, Apr. 2022.

Issue

Section

Materials

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.