Novel research on polyamide 11 nanocomposites reinforced by Titania nanoparticle deposited jute fibres
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16554Keywords:
jute fibres, alkaline treatment, polyamide 11, biocomposites, modification, vinyltrimethoxysilaneAbstract
The combination of jute fibres and polyamide 11 (PA11) to produce full biocomposites is expectance of scientists due to many benefits of both these materials such as high mechanical performances and environmentally friendly behaviors. Unfortunately, there is scarce published research on these bicomposites uptil now. In order to improve the interfacial interaction and adhesion between jute fibres and PA11 resin matrix, an important key in the fabrication of the composites. In this study, a combination of alkaline treatment and Tetraisopropyl orthotitanate (Tip) modification was employed to modify the surface of jute fibres. The deposition or grafting of TiO2 nanoparticles was proved by using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) observations and energy dispersive X-ray spectroscopy (EDS/EDX) analysis. The improvement of the interfacial interaction and adhesion between surface modified jute fibres and PA11 resin as well as high performances (mechanical properties, thermal oxidative and water absorption stability) of obtained biocomposites were also clarified.
Downloads
References
A. K. Rana, K. Jayachandran, Jute Fiber for Reinforced Composites and its Prospects, Mol. Cryst. and Liq. Crysf. 353 (2000) 35-45. DOI:10.1080/10587250008025646
A. K. Mohanty, M. Misra, G. Hinrichsen, Biofibers, biodegradable polymers and biocomposites: An overview, Macromol. Mater. Eng. 276 (2000) 1-24. DOI:10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
R. Patel, D. A. Ruehle, J. R. Dorgan, P. Halley, D. Martin, Biorenewable Blends of Polyamide-11 and Polylactide, Polym. Eng. Sci. 54 (2014) 1523-1532. DOI:10.1002/pen.23692
H. Oliver-Ortega, L. A Granda, F. X. Espinach, J. A Méndez, F. Julian, P. Mutjé, Tensile properties and micromechanical analysis of stone groundwood from softwood reinforced bio-based polyamide11 composites, Compos. Sci. Technol. 132 (2016) 123-130. https://doi.org/10.1016/j.compscitech.2016.07.004
H. Oliver-Ortega, J. A. Méndez, F. X. Espinach, Q. Tarrés, M. Ardanuy, P. Mutjé, Impact Strength and Water Uptake Behaviors of Fully Bio-Based PA11-SGW Composites, Polymers, 10 (2018) 717-728. https://doi.org/10.3390/polym10070717
C. Baley, M. Lan, A. Bourmaud, A. L. Duigou, Compressive and tensile behaviour of unidirectional composites reinforced by natural fibres: influence of fibres (flax and jute), matrix and fibre volume fraction, Mater. Today Commun. 16 (2018) 300-306. https://doi.org/10.1016/j.mtcomm.2018.07.003
P. Russo, G. Simeoli, L. Vitiello, G. Filippone, Bio-Polyamide 11 Hybrid Composites Reinforced with Basalt/Flax Interwoven Fibers: A Tough Green Composite for Semi-Structural Applications, Fibers, 7(5) (2019) 41. https://doi.org/10.3390/fib7050041
P. Zierdt, T. Theumer, G. Kulkarni, V. Däumlich, J. Klehm, U. Hirsch, A. Weber, Sustainable wood-plastic composites from bio-based polyamide 11 and chemically modified beech fibers, Mater. Technol. 6 (2015) 6-14. https://doi.org/10.1016/j.susmat.2015.10.001
T. Semba, K. Taguma, M. Tawara, A. Ito, K. Kitagawa, A. Sato, H. Yang, Biocomposites composed of Polyamide 11 and Cellulose Nanofibers Pretreated with a Cationic Reagents, Nihon Reoroji Gakkaishi, 45(1) (2016) 39-47. DOI:10.1678/rheology.45.39
H. Geoffrey, D. Jany, D. Eric, M. D. Huynh, T. Hoang, N. V. Giang, T. H. Trung, P. Philippe, L. Colette, Physical structure and mechanical properties of polyamide/bamboo composites, J. Therm. Anal. Calorim. 129(3) (2017) 1463-1469. http://doi.org/10.1007/s10973-017-6297-1
M. D. Huynh, T. H. Trung, D. V. Cong, T. Hoang, E. Dantras, L. Colette, N. V. Giang, Effect of Maleic Anhydride Grafted Ethylene Vinyl Acetate Compatibilizer on the Mechanical, Thermal Properties and Weathering Resistance of Polyamide 11/Bamboo Fiber Composite, Mater. Trans. 61 (2020) 1527-1534. https://doi.org/10.2320/matertrans.MT-MN2019001
G. Seshanandan, D. Ravindran and T. Sornakumara, Mechanical properties of nano titanium oxide particles – hybrid jute-glass FRP composites, Materials Today: Proceedings, 3 (2016) 1383–1388. DOI:10.1016/j.matpr.2016.04.019
B. Suresha, S. L. Guggare, N. V. Raghavendra, Effect of TiO2 Filler Loading on Physico-Mechanical Properties and Abrasion of Jute Fabric Reinforced Epoxy Composites, MSA, 7(9) (2016) 510-526. DOI:10.4236/MSA.2016.79044
P. Pavel, V. Aljaz, P. Marko, S. S. Andrijana, M. Mohor, S. V. Angela, N. Urban, O. Boris, Structural studies of TiO2/wood coatings prepared by hydrothermal deposition of rutile particles from TiCl4 aqueous solutions on spruce (Picea Abies) wood, Appl. Surf. Sci. 372 (2016) 125-138. DOI:10.1016/j.apsusc.2016.03.065
H. Wang, G. Xian, H. Li, Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite, Composites: Part A, 76 (2015)172–180. https://doi.org/10.1016/j.compositesa.2015.05.027
R. P. G. Ranganagowda, S. S. Kamath, B. Bennehalli. Extraction and characterization of cellulose from natural areca fiber. Mat. Sci. Res. India 16 (1) (2019), 86-93. http://dx.doi.org/10.13005/msri/160112
G. Lui, J. Y. Liao, A. Duan, Z. Zhang, M. Fowler and A. Yu, Graphene-Wrapped Hierarchical TiO2 Nanoflower Composite with Enhanced Photocatalytic Performance, J. Mater. Chem. 1(39) (2013) ID: 95610231. DOI:10.1039/C3TA12329D
X. Liu, Y. Cui, S. Hao, H. Chen, Influence of Depositing Nano-SiO2 Particles on the Surface Microstructure and Properties of Jute Fibers via In Situ Synthesis, Composites: Part A, 109 (2018) 368-375. https://doi.org/10.1016/j.compositesa.2018.03.026
J. Raabe, A. S. Fonseca, L. Bufalino, C. Ribeiro, M. A. Martins, J. M. Marconcini, G. H. D. Tonoli, Evaluation of reaction factors for deposition of silica (SiO2) nanoparticles on cellulose fibers, Carbohydr. Polym. 114 (2014) 424-431. https://doi.org/10.1016/j.carbpol.2014.08.042
T. Mukherjee and N. Kao, PLA Based Biopolymer Reinforced with Natural Fibre: A Review, J. Polym. Environ. 19 (2011) 714725. DOI:10.1007/s10924-011-0320-6.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.