Isothermal oxidation property of plasma sprayed 20YSZ/NiAl thermal barrier coating

Pham Thi Ly, Nguyen Van Tuan, Nguyen Tuan Anh, Pham Thi Ha, Dao Bich Thuy, Ly Quoc Cuong, Vo An Quan, Le Hai Dang
Author affiliations

Authors

  • Pham Thi Ly Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Ha Noi, Viet Nam
  • Nguyen Van Tuan Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Ha Noi, Viet Nam
  • Nguyen Tuan Anh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Ha Noi, Viet Nam
  • Pham Thi Ha Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Ha Noi, Viet Nam
  • Dao Bich Thuy Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Ha Noi, Viet Nam
  • Ly Quoc Cuong Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Ha Noi, Viet Nam
  • Vo An Quan Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Ha Noi, Viet Nam
  • Le Hai Dang Chemistry Faculty, Hanoi National University of Education, 136, Xuan Thuy, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/17636

Abstract

In this study, 20 wt.% yttria-stabilized zirconia (20YSZ) thermal barrier coatings (TBCs) were deposited by air plasma spraying (APS) on 310S stainless steel with NiAl as a bond coat. The TBCs were exposed to an isothermal oxidation test in an electric furnace under the air at 1000˚C for 8, 24, 48, 120, and 200 hours. Thermal oxidation characteristic of the coating was evaluated through cross-sectional structure, phase composition, and tensile adhesive strength. Results show that the 20YSZ coating consisted of mainly a thermodynamically stable cubic phase (Arkalite). The porosity, the thickness of the thermal growth oxide (TGO) layer, and the adhesive strength of the research sample had changes depending on the time of the isothermal oxidation. After exposure at 1000oC, the porosity of the coating could be reduced by up to 62.3% compared to the initial coating; the adhesion strength was improved significantly. The TGO thickness was high, but its growth rate tended to slow down and stabilize for the isothermal oxidation duration in a range of 24÷200 hours.

Downloads

Download data is not yet available.

References

1. Miller R. A. - Thermal barrier coatings for aircraft engines: history and directions, J. Therm. Spray Technol. 6 (1) (1997) 35-42. https://doi.org/10.1007/BF02646310.

2. Bakan E., Vanben R. - Ceramic Top Coats of Plasma-Sprayed Thermal Barrier

Coatings: Materials, Processes, and Properties, J. Therm. Spray Technol. 26 (2017) 992-1010. https://doi.org/10.1007/s11666-017-0597-7.

3. Cao X.Q., Vassen R., and Stoever D. - Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc. 24 (1) (2004) 1-10. https://doi.org/10.1016/S0955-2219(03)00129-8.

4. Hasselman D. P. H., Johnson L. F., Bentsen L. D., Syed R., Lee H. L., Swain M. V. - Thermal Diffusivity of Conductivity of Dense Polycrystalline ZrO2 Ceramics: A Survey, Am. Ceram. Soc. Bull. 66 (1987) 799-806.

5. Pawlowski L., Lombard D., and Fauchais P. - Structure–Thermal Properties Relationship in Plasma Sprayed Zirconia Coatings, J. Vac. Sci. Technol. A 3 (6) (1985) 2494-2500.

6. Vourlias G., Pistofidis N., Chanliambalias D., Tsiaoussis I., Stergioudis G., Polychroniadis E. K. - A preliminary study of the structure and the corrosion performance of plasma sprayed YSZ coatings, J. Optoelectron. Adv. Mater. 9 (6) (2007) 1660-1664.

7. Fauchais P., Vardelle M., Goutier S. - Latest researches advances of plasma spraying: From splat to coating formation, J. Therm. Spray Technol. 25 (2016) 1534-1553. https://doi.org/ 10.1007/s11666-016-0435-3.

8. Muttera M., Mauera G., Mückea R., Guillon O., Vaßen R. - Correlation of splat morphologies with porosity and residual stress in plasma-sprayed YSZ coatings, Surf. Coat. Technol. 318 (2017) 157-169. https://doi.org/10.1016/j.surfcoat.2016.12.061.

9. Gan J. A., Berndt C. C. - Quantification and taxonomy of pores in thermal spray coatings by image analysis and stereology approach, Metall. Mater. Trans. A 44 (2013) 4844-4858. https://doi.org/10.1007/s11661-013-1818-4.

10. Sobhanverdi R., Akbari A. - Porosity and microstructural features of plasma sprayed Yttria stabilized Zirconia thermal barrier coatings, Ceram. Int. 41 (10) (2015) 14517-14528. https://doi.org/10.1016/j.ceramint.2015.07.102.

11. Xiaofeng Z., Kesong Z., Huantao C., Tao H., Jinbing S., Min L. - Properties of Thermal Barrier Coatings Made of Different Shapes of ZrO2-7wt%Y2O3 Powders, Rare Met. Mater. Eng. 44 (6) (2015) 1301-1306. https://doi.org/10.1016/S1875-5372(15)30079-5.

12. Yu Z. X., Huang J. B., Wang W. Z., Wu L. - Deposition and properties of a multilayered thermal barrier coating, Surf. Coat. Technol. 288 (2016) 126-134. https://doi.org/10.1016/ j.surfcoat.2016.01.001.

13. Huang J., Wang W., Yu J., Wu L., Feng Z. - Effect of Particle Size on the Micro-cracking of Plasma-Sprayed YSZ Coatings During Thermal Cycle Testing, J. Therm. Spray Technol. 26 (2017) 755-763. https://doi.org/10.1007/s11666-017-0547-4.

14. Liu T., Luo X. T., Chen X., Yang G. J., Li C. X., Li C. J. - Morphology and Size Evolution of Interlamellar Two-Dimensional Pores in Plasma-Sprayed La2Zr2O7 Coatings During Thermal Exposure at 1300 °C, J. Therm. Spray Technol. 24 (2015) 739-748. https://doi.org/10.1007/ s11666-015-0236-0.

15. Giolli C., Scrivani A., Rizzi G., Borgioli F., Bolelli G., Lusvarghi L. - Failure Mechanism for Thermal Fatigue of Thermal Barrier Coating Systems, J. Therm. Spray Technol. 18 (2009) 223-230. https://doi.org/10.1007/s11666-009-9307-4.

16. Rajendran R. - Gas turbine coatings – an overview, Eng. Fail. Anal. 26 (2012) 355-369. https://doi.org/10.1016/j.engfailanal.2012.07.007.

17. Liu X. Y., Wang X. Z., Javed A., Zhu C., Liang G. Y. - The effect of sintering temperature on the microstructure and phase transformation in tetragonal YSZ and LZ/YSZ composites, Ceram. Int. 42 (2) (2016) 2456-2465. https://doi.org/10.1016 /j.ceramint.2015.10.046.

18. Keyvani A., Saremi M., Sohi M. H., Valefi Z. - A comparison on thermomechanical properties of plasma-sprayed conventional and nanostructured YSZ TBC coatings in thermal cycling, J. Alloys Compd. 541 (2012) 488-494. https://doi.org/10.1016/ j.jallcom.2012.06.062.

19. Jamali H., Mozafarinia R., Razavi R. S., Ahmadi-Pidani R., Loghman-Estarki M. R. - Fabrication and Evaluation of Plasma-Sprayed Nanostructured and Conventional YSZ Thermal Barrier Coatings, Curr. Nanosci. 8 (2012) 402-409.

20. Foroushani M. H., Shamanian M., Salehi M., Davar F. - Porosity analysis and oxidation behavior of plasma sprayed YSZ and YSZ/LaPO4 abradable thermal barrier coatings, Ceram. Int. 42 (14) (2016)15868-15875. https://doi.org/10.1016/j.ceramint.2016.07.057.

21. Doleker K.M., Ozgurluk Y., Parlakyigit A.S., Ozkan D., Gulmez T., Karaoglanli A. C. - Oxidation Behavior of NiCr/YSZ Thermal Barrier Coatings (TBCs), Open Chem. 16 (2018) 876-881. https://doi.org/10.1515/chem-2018-0096.

22. Yang G. J., Chen Z. L., Li C. X., and Li C. J. - Microstructural and Mechanical Property Evolutions of Plasma-Sprayed YSZ Coating During High-Temperature Exposure: Comparison Study Between 8YSZ and 20YSZ, J. Therm. Spray Tech. 22 (2013) 1294-1302. https://doi.org/10.1007/s11666-013-9986-8.

23. Huang J., Chu X., Yang T., Fang H., Ye D., Wang W., Zhang X., Sun W., Huang R., Li C. J. - Achieving high anti-sintering performance of plasma-sprayed YSZ thermal barrier coatings through pore structure design, Surf. Coat. Technol. 435 (2022) 128259. https://doi.org/ 10.1016/j.surfcoat.2022.128259.

24. Paraschiv A., Banu A., Doicin C., Ionica I. - Iso thermal oxidation behavior of plasma sprayed conventional and nanostructure YSZ thermal barrier coatings, U.P.B. Sci. Bull., B 82 (2) (2020) 163-174.

25. Li G., Xie H., Yang GJ., Liu G., Li C. X., Li C. J. - A comprehensive sintering mechanism for TBCs-part I: an overall evolution with two-stage kinetics, J. Am. Ceram. Soc. 100 (5) (2017) 2176-2189. https://doi.org/10.1111/jace.14784.

26. Cipitria A., Golosnoy I., Clyne T. - A sintering model for plasma-sprayed zirconia

TBCs. Part I: free-standing coatings, Acta Mater. 57 (4) (2009) 980-992. https://doi.org/ 10.1016/j.actamat.2008.10.024.

27. Arantes T. M., Mambrini G. P., Stroppa D. G., Leite E. R., Longo E., Ramirez A. J., and Camargo E. R. - Stable colloidal suspensions of nanostructured zirconium oxide synthesized by hydrothermal process, J. Nanopart. Res. 12 (2010) 3105-3110. https://doi.org/10.1007/ s11051-010-9906-5.

28. William D., Callister J. R., David G. R. - Fundamentals of materials science and engineering: An integrated approach, Wiley, New York. 2012.

29. Behbahani A., Rowshanzamir S., Esmaeilifar A. - Hydrothermal synthesis of zirconia nanoparticles from commercial zirconia, Procedia Eng. 42 (2012) 908-917. https://doi.org/ 10.1016/j.proeng.2012.07.483.

Downloads

Published

28-08-2025

How to Cite

[1]
L. Phạm Thị, “Isothermal oxidation property of plasma sprayed 20YSZ/NiAl thermal barrier coating”, Vietnam J. Sci. Technol., vol. 63, no. 4, pp. 745–756, Aug. 2025.

Issue

Section

Materials

Most read articles by the same author(s)