Composition distribution and photoluminescence properties of colloidal Cu-doped Zn0.5Cd0.5S quantum dots
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/18013Keywords:
Colloidal Cu-doped ZnCdS quantum dot, composition distribution, radiative transition, band gap energy renormalizationAbstract
This study aims to find a solution for preparing Cu-doped colloidal Zn0.5Cd0.5S quantum dots (QDs) with different radial Zn and Cd composition distributions and investigate the effects of these distributions on the QDs’ optical properties. The preparation of QDs with radial gradient composition distribution was performed by quickly and simultaneously injecting Zn and Cd precursor solutions into the reaction flask, whereas QDs with homogeneous composition distribution were prepared by alternately injecting small amounts of the Zn and Cd precursors after preparing crystal nuclei along with thermally annealing the QDs in the reaction solution. Cu doping Zn0.5Cd0.5S QDs decreases their band edge luminescence and significantly increases their broad emission band at lower energy. This emission band is generated by radiative recombination related to the Cu dopant, as well as lattice defects such as interstitial atoms and vacancies. Different composition distributions do not affect the excitation power dependence behavior of band edge luminescence and dopant related emission intensities; however, they cause strong band gap energy renormalizations in Cu-doped ternary QDs with increasing excitation power density. This enhancement is attributed to the optically active region in small gradient alloyed QDs and the existence of a wetting layer surrounding it.Downloads
References
1. Lee J. H., Song W. C., Yang K. J., Yoo Y. S. - Characteristics of the CdZnS thin film doped by indium diffusion, Thin Solid Films 416 (1-2) (2002) 184-189. doi:10.1016/s0040-6090(02)00702-2.
2. Zarkooshi A. A., Kaleli M. - Investigation of structural, morphological & optical properties of nanopowder CdZnS:Cu, Inorg. Chem. Commun. 127 (2021) 108508. doi:10.1016/j.inoche.2021.108508.
3. Nagamani K., Reddy M. V., Lingappa Y., Ramakrishna Reddy K. T., Miles R. W. - Physical Properties of ZnxCd1-xS Nanocrytalline Layers Synthesized by Solution Growth Method, Int. J. Optoelectron. Eng. 2 (2) (2012) 1-4. doi: 10.5923/j.ijoe.20120202.01.
4. Pradhan N., Sarma, D. D. - Advances in Light-Emitting Doped Semiconductor Nanocrystals, J. Phys. Chem. Lett. 2 (21) (2011) 2818-2826. doi:10.1021/jz201132s.
5. Yadav I., Ahlawat, D. S. - Effect of dopant concentration on structural and optical properties of Cd0.7Zn0.3S semiconducting nanocrystals, Mater. Sci. Eng. B 252 (2020) 114450. doi:10.1016/j.mseb.2019.114450.
6. Ahlawat D. S., Yadav I. - Optical, morphological and thermal investigation of Cu doped ternary semiconducting Cd1-xZnxS:Cu nanomaterials, Opt. Mater. 119 (2021) 111377. doi:10.1016/j.optmat.2021.111377.
7. Tang A., Yi L., Han W., Teng F., Wang Y., Hou Y., Gao M. - Synthesis, optical properties, and superlattice structure of Cu(I)-doped CdS nanocrystals, Appl. Phys. Lett. 97(3) (2010) 033112. doi:10.1063/1.3466664.
8. Srivastava B. B., Jana S., Pradhan N. - Doping Cu in Semiconductor Nanocrystals: Some Old and Some New Physical Insights, J. Am. Chem. Soc. 133(4) (2011) 1007-1015. doi:10.1021/ja1089809.
9. Peng W. Q., Cong G. W., Qu S. C., Wang Z. G. - Synthesis and photoluminescence of ZnS:Cu nanoparticles, Opt. Mater. 29 (2-3) (2006) 313-317. doi:10.1016/ j.optmat.2005.10.003.
10. Singh S. B., Limaye M. V., Lalla N. P., Kulkarni S. K. - Copper-ion-induced photoluminescence tuning in CdSe nanoparticles, J. Lumin. 128(12) (2008) 1909-1912. doi:10.1016/j.jlumin.2008.05.022.
11. Rajesh C., Phadnis C. V., Sonawane K. G., Mahamuni S. - Synthesis and optical properties of copper-doped ZnSe quantum dots, Phys. Scr. 90 (2015) 015803. doi:10.1088/0031-8949/90/1/015803.
12. Srivastava R. K., Pandey N., Mishra S. K. - Effect of Cu concentration on the photoconductivity properties of ZnS nanoparticles synthesized by co-precipitation method. Mater. Sci. Semicond, Process. 16(6) (2013) 1659-1664. doi:10.1016/j.mssp.2013.06.009.
13. Liu B., Sharma M., Yu J., Shendre S., Hettiarachchi C., Sharma A., Yeltik A., Wang L., Sun H., Dang C., Demir H. V. - Light‐Emitting Diodes with Cu‐Doped Colloidal Quantum Wells: From Ultrapure Green, Tunable Dual‐Emission to White Light, Small, (2019) 1901983. doi:10.1002/smll.201901983.
14. Chawla A. K., Singhal S., Nagar S., Gupta H. O., Chandra R. - Study of composition dependent structural, optical, and magnetic properties of Cu-doped Zn1−xCdxS nanoparticles, J. Appl. Phys. 108 (12) (2010) 123519. doi:10.1063/1.3524516.
15. Ouyang J., Ratcliffe C. I., Kingston D., Wilkinson B., Kuijper J., Wu X., Ripmeester J. A., Yu K. - Gradiently Alloyed ZnxCd1-xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach, J. Phys. Chem. C 112 (13) (2008) 4908-4919. doi:10.1021/jp710852q.
16. Mansur A. A. P., Mansur H. S., Caires A. J., Mansur R. L., Oliveira, L. C. - Composition-Tunable Optical Properties of ZnxCd1-xS Quantum Dot-Carboxymethylcellulose Conjugates: Towards One-Pot Green Synthesis of Multifunctional Nanoplatforms for Biomedical and Environmental Applications, Nanoscale Research Lett. 12 (2017) 443. doi:10.1186/s11671-017-2212-8.
17. Zhong X., Feng Y., Knoll W., Han M. - Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width, J. Am. Chem. Soc. 125 (44) (2003) 13559-13563. doi:10.1021/ja036683a.
18. Madras G., McCoy B. J. - Distribution kinetics of Ostwald ripening at large volume fraction and with coalescence, J. Colloid Interf. Sci. 261 (2) (2003) 423-433. doi:10.1016/s0021-9797(03)00129-2.
19. Thang P. V., Tuyen H. V., Quang V. X., Lieu N. T. T., Thanh N. T., Nghia N. X. - Detection of luminescence centers in colloidal Cd0.3Zn0.7S nanocrystals by synchronous luminescence spectroscopy, Commun. Phys. 30 (2) (2020) 181-187. doi:10.15625/0868-3166/30/2/13819.
20. Li J., Xia J. B. - Exciton states and optical spectra in CdSe nanocrystallite quantum dots, Phys. Rev. B 61 (23) (2000) 15880-15886. doi:10.1103/physrevb.61.15880.
21. Jasieniak J., Bullen C., van Embden J., Mulvaney P. - Phosphine-Free Synthesis of CdSe Nanocrystals, J. Phys. Chem. B 109 (44) (2005) 20665-20668. doi:10.1021/jp054289o.
22. Wang L., Jiang Y., Wang C., Wang W., Cao B., Niu M., Qian, Y. - Composition-controllable synthesis and optical properties of non-integral stoichiometry compound ZnxCd1-xS nanorods, J. Alloys Compd. 454 (1-2) (2008) 255-260. doi:10.1016/j.jallcom.2006.12.046.
23. Chen Z., Tian Q., Song Y., Yang J., Hu J. - One-pot synthesis of ZnxCd1-xS nanocrystals with tunable optical properties from molecular precursors, J. Alloys Compd. 506 (2) (2010) 804-810. doi:10.1016/j.jallcom.2010.07.075
24. Heitz R., Guffarth F., Mukhametzhanov I., Grundmann M., Madhukar A., Bimberg D. - Many-body effects on the optical spectra of InAs/GaAs quantum dots, Phys. Rev. B 62 (24) (2000) 16881-16885. doi:10.1103/physrevb.62.16881.
25. Nowak A. K., Gallardo E., van der Meulen H. P., Calleja J. M., Ripalda J. M., González L., González Y. - Band-gap renormalization in InP/GaxIn1-xP quantum dots, Phys. Rev. B 83 (24) (2011) 245447. doi:10.1103/physrevb.83.245447.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.