Synthesis and characterization of interpenetrating polymer network of deproteinized natural rubber grafted styrene and regenerated cellulose

Author affiliations

Authors

  • Tran Thi Tuyet Hanoi University of Science and Technology, No. 1 Dai Co Viet street, 10000 Ha Noi, Viet Nam https://orcid.org/0009-0003-8920-1801
  • Vu Trung Nam Hanoi University of Science and Technology, No. 1 Dai Co Viet street, 10000 Ha Noi, Viet Nam https://orcid.org/0000-0003-4919-2931
  • Nguyen Quynh Vi Hanoi University of Science and Technology, No. 1 Dai Co Viet street, 10000 Ha Noi, Viet Nam
  • Nguyen Thu Ha Hanoi University of Science and Technology, No. 1 Dai Co Viet street, 10000 Ha Noi, Viet Nam https://orcid.org/0000-0002-1557-4571
  • Tran Thi Thuy Hanoi University of Science and Technology, No. 1 Dai Co Viet street, 10000 Ha Noi, Viet Nam https://orcid.org/0000-0003-0678-2085
  • Nguyen Ngoc Mai Hanoi University of Science and Technology, No. 1 Dai Co Viet street, 10000 Ha Noi, Viet Nam https://orcid.org/0000-0002-8560-3139

DOI:

https://doi.org/10.15625/2525-2518/18333

Keywords:

natural rubber,, styrene, , regenerated cellulose, , morphology,, thermal properties

Abstract

Non-toxic and environmentally friendly modified natural polymers are a topic of great interest to many researchers. In this study, the effect of combining natural rubber (NR) and regenerated cellulose (RC) which overwhelms the conventional composite materials in terms of physical properties and environmental applications was investigated. The deproteinized natural rubber (DPNR) via graft copolymerization of styrene as the continuous phase. The RC was employed as a reinforcing phase or discontinuous phase. The combination of these two polymers will be made by coprecipitating from a mixture of latex and RC with different NR/RC ratios. The properties of the new bio composite materials were investigated by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The morphology was analyzed by scanning electron microscopy (SEM). The enhancement of thermal properties was examined through thermogravimetric analysis (TGA) and differential scanning thermal analysis (DSC). These results showed that the novel structure formation of RC/DPNR-graft-PS exhibited excellent properties, especially the strengthening ability of cellulose for DPNR-graft-PS was elucidated.

Downloads

Download data is not yet available.

References

1. Dieu T. V., Chuong B., Hung D. V., Tung N. H., Linh N. P. D., and Oanh D. T. Y - Review: Natural rubber - Improvement of properties, Vietnam J. Chem. 61 (2023) 269-283.

2. Trovatti, E., Carvalho, A.J., Ribeiro, S.J. and Gandini, A. – Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers. Biomacromolecules 14 (2013) 2667-2674.

3. Peng Z., Kong L.X., Li S. D., Chen Y., and Huang M. F. - Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization, Compos. Sci. Technol. 67 (2007) 3130-3139.

4. Chen X. and Qiu T. - Natural rubber composites reinforced with basic magnesium oxysulfate whiskers: Processing and ultraviolet resistance/flame retardant properties, Polym. Test. 81 (2020) 106271.

5. Rattanasom N., Poonsuk A., and Makmoon T. - Effect of curing system on the mechanical properties and heat aging resistance of natural rubber/tire tread reclaimed rubber blends, Polym. Test. 24 (2005) 728-732.

6. Mao Z., Wang W., and Mao G. - Improving the thermal aging resistance of γ-vulcanized polybutadiene rubber (BR)/Nature Rubber (NR) blends with sulfur added, Adv. Mater. Sci. Eng. 2021 (2021) 1-10.

7. Zhang Z., Sun J., Lai Y., Wang Y., Liu X., Shi S., and Chen X. - Effects of thermal aging on uniaxial ratcheting behavior of vulcanised natural rubber, Polym. Test. 70 (2018) 102-110.

8. Tamási K. and Kollár M. S. - Effect of Different Sulfur Content in Natural Rubber Mixture on Their Thermo-mechanical and Surface Properties, Int. J. Eng. Res. 4 (2018) 28-37.

9. Dufresne A. - Nanocellulose: a new ageless bionanomaterial, Mater. Today 16 (2013) 220-227.

10. Kumagai A., Tajima N., Iwamoto S., Morimoto T., Nagatani A., Okazaki T., and Endo T. - Properties of natural rubber reinforced with cellulose nanofibers based on fiber diameter distribution as estimated by differential centrifugal sedimentation, Int. J. Biol. Macromol. 121 (2019) 989-995.

11. Yu P., He H., Luo Y., Jia D., and Dufresne A. - Reinforcement of natural rubber: the use of in situ regenerated cellulose from alkaline–urea–aqueous system, Macromol. 50 (2017) 7211-7221.

12. Fridrihsone V., Zoldners J., Skute M., Grinfelds U., Filipova I., Sivacovs I., Spade M., and Laka M. - Dissolution of various cellulosic materials and effect of regenerated cellulose on mechanical properties of paper, Trans Tech Publ (2019) 138-144

13. Nguyen M. N., Tran T. T., Nguyen Q. T., Tran Thi T., Nguyen B. C., and Hollmann D. - Simple synthesis of cellulose hydrogels based on the direct dissolution of cellulose in tetrabutylphosphonium hydroxide followed by crosslinking, Polym. Adv. Technol. 33 (2022) 3376-3385.

14. Cai J. and Zhang L. - Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions, Macromol. Biosci. 5 (2005) 539-548.

15. Qi H., Yang Q., Zhang L., Liebert T., and Heinze T. - The dissolution of cellulose in NaOH-based aqueous system by two-step process, Cellulose 18 (2011) 237-245.

16. Xiong B., Zhao P., Hu K., Zhang L., and Cheng G. - Dissolution of cellulose in aqueous NaOH/urea solution: role of urea, Cellulose 21 (2014) 1183-1192.

17. Zhou J. and Zhang L. - Solubility of cellulose in NaOH/urea aqueous solution, Polym. J. 32 (2000) 866-870.

18. PM, V., Thomas S., Oksman K., and Mathew A. P. - Effect of cellulose nanofibers isolated from bamboo pulp residue on vulcanized natural rubber, Bioresources 7 (2012) 2156-2168.

19. Yahya Y. R., Azura A., and Ahmad Z. - Effect of curing systems on thermal degradation behaviour of natural rubber (SMR CV 60), J. Phys. Sci. 22 (2011) 1-14.

20. Choo K., Ching Y. C., Chuah C. H., Julai S., and Liou N. S. - Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber, Mater. 9 (2016) 644.

21. Kim K. J. and White J. L. - Effects of regenerated cellulose and natural fiber on interfacial adhesion, rheology and crystallization property in ε-polycaprolactone compounds, Compos. Interfaces 16 (2009) 619-637.

22. Nakagaito A. N., Fujimura A., Sakai T., Hama Y., and Yano H. - Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process, Compos. Sci. Technol. 69 (2009) 1293-1297.

23. Wang T. and Drzal L. T. - Cellulose-nanofiber-reinforced poly (lactic acid) composites prepared by a water-based approach, ACS Appl. Mater. Interfaces 4 (2012) 5079-5085.

24. Kim T., Jeon H., Jegal J., Kim J. H., Yang H., Park J., Oh D. X., and Hwang S. Y. - Trans crystallization behavior and strong reinforcement effect of cellulose nanocrystals on reinforced poly (butylene succinate) nanocomposites, RSC Adv. 8 (2018) 15389-15398.

25. Soatthiyanon N., Aumnate C., and Srikulkit K. - Rheological, tensile, and thermal properties of poly (butylene succinate) composites filled with two types of cellulose (kenaf cellulose fiber and commercial cellulose), Polym. Compos. 41 (2020) 2777-2791.

26. Dung T., Nhan N., Thuong N., Viet D., Tung N., Nghia P., Kawahara S., and Thuy T. - Dynamic mechanical properties of vietnam modified natural rubber via grafting with styrene, Int. J. Polym. Sci. 2017 (2017)

27. Dung T. A., Nhan N. T., Thuong N. T., Nghia P. T., Yamamoto Y., Kosugi K., Kawahara S., and Thuy T. T. - Modification of Vietnam natural rubber via graft copolymerization with styrene, J. Braz. Chem. Soc. 28 (2017) 669-675.

28. Moussa O., Vassilopoulos A. P., and Keller T. – Experimental DSC-based method to determine glass transition temperature during curing of structural adhesives, Constr. Build. Mater. 28 (2012) 263-268.

29. Chen D., Shao H., Yao W., and Huang B. - Fourier transform infrared spectral analysis of polyisoprene of a different microstructure, Int. J. Polym. Sci. 2013 (2013)

30. Manohar N., Jayaramudu J., Suchismita S., Rajkumar K., Reddy A. B., Sadiku E., Priti R., and Maurya D. - A unique application of the second order derivative of FTIR–ATR spectra for compositional analyses of natural rubber and polychloroprene rubber and their blends, Polym. Test. 62 (2017) 447-453.

31. Nampitch T. and Buakaew P. - The effect of curing parameters on the mechanical properties of styrene-NR elastomers containing natural rubber-graft-polystyrene, Agric. Nat. Res. 40 (2006) 7-16.

32. Ratnam C. T., Nasir M., Baharin A., and Zaman K. - Electron beam irradiation of epoxidized natural rubber: FTIR studies, Polym. Int. 49 (2000) 1693-1701.

33. Fernández-Berridi M. J., González N., Mugica A., and Bernicot C. - Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR, Thermochimica Acta 444 (2006) 65-70.

34. Masson J. F., Pelletier L., and Collins P. - Rapid FTIR method for quantification of styrene‐butadiene type copolymers in bitumen, J. Appl. Polym. Sci. 79 (2001) 1034-1041.

35. Hinterstoisser B. and Salmén L. - Application of dynamic 2D FTIR to cellulose. Vib. Spectrosc., 22 (2000) 111-118.

36. El-Sakhawy M., Kamel S., Salama A., and Tohamy H. A. S. - Preparation and infrared study of cellulose based amphiphilic materials, Journal of Cellulose Chemistry Technology 52 (2018) 193-200.

37. Pastorova I., Botto R. E., Arisz P. W., and Boon J. J. - Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study, Carbohydr. Res. 262 (1994) 27-47.

38. Li M., Wei T., Qian C., and Liang Z. - Preparation of microcrystalline cellulose from Rabdosia rubescens residue and study on its membrane properties, Sci. Rep. 11 (2021) 1-9.

39. Onwukamike K. N., Tassaing T., Grelier S., Grau E., Cramail H., and Meier M. A. - Detailed understanding of the DBU/CO2 switchable solvent system for cellulose solubilization and derivatization, ACS Sustain. Chem. Eng. 6 (2018) 1496-1503.

40. Yu P., He H., and Dufresne A. - A novel interpenetrating polymer network of natural rubber/regenerated cellulose made by simple co-precipitation, Mater. Lett. 205 (2017) 202-205.

Downloads

Published

23-10-2025

How to Cite

[1]
T. T. Tran, T. N. Vu, Q. V. Nguyen, T. H. Nguyen, T. T. Tran, and N. M. Nguyen, “Synthesis and characterization of interpenetrating polymer network of deproteinized natural rubber grafted styrene and regenerated cellulose”, Vietnam J. Sci. Technol., vol. 63, no. 5, pp. 875–885, Oct. 2025.

Issue

Section

Materials

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 > >> 

You may also start an advanced similarity search for this article.