A high effective CuInS2 photocatalyst for oxidative desulfurization of dibenzothiophene in fuel oil
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/18501Keywords:
CuInS2, oxidative desulfurization, photocatalyst, dibenzothiophene, diesel fuelAbstract
In this study, CuInS2 materials were synthesized by hydrothermal method. The effect of the different reaction times have been investigated. The structure and morphology of the materials were characterized by XRD, SEM, TEM, UV-Vis and EDX measurement methods. The obtained results showed with reation time at 24 h, the CuInS2 sample (CIS-24) has an average particle size of about 50 nm and a band gap energy value of Eg=1.48 eV, which has the ability to strongly absorb visible light. The photocatalytic activity of the CIS-24 was investigated by degradation of dibenzothiophene under visible light irradiation. The photocatalytic efficiency reached a maximum of 97.9% after 5 h of reaction temperature at 70 oC with 50 mg of the catalyst dosage and 1,0 mL of H2O2 as oxidant.
Downloads
References
1. Saiyasitpanich P., Lu M., Keener T. C., Liang F., Khang S. J. - The effect of diesel fuel sulfur content on particulate matter emissions for a nonroad diesel generator, J. Air Waste Manage Assoc. 55 (2005) 993-998. doi: 10.1080/10473289.2005.10464685.
2. Shah S. D., Cocker D. R., Miller J. W., Norbeck J. M. - Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines, Environ. Sci. Technol. 38 (2004) 2544-2550. doi: 10.1021/es0350583.
3. Maricq M. M., Chase R. E., Xu N., Laing P. M. - The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: Light duty diesel vehicles, Environ Sci Technol. 36 (2002) 283-289, doi: 10.1021/es010961t.
4. Zielinska B., Sagebiel J., McDonald J. D., Whitney K., Lawson D. R. - Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles, J. Air Waste Manage. Assoc. 54 (2004) 1138-1150. doi:10.1080/ 10473289.2004.10470973.
5. Ge L., Liu Q., Hao N., Kun W. - Recent developments of photoelectrochemical biosensors for food analysis, J. Mater. Chem. B 7 (2019) 7283-7300. doi: 10.1039/C9TB01644A.
6. Houalla M., Broderick D. H., Sapre A. V., Nag N. K., de Beer V. H. J., Gates B. C., Kwart H. - Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by Co-Mo/gamma-Al2O3, J. Catal. 61 (1980) 521-523. doi: 10.1016/0021-9517(80)90400-5.
7. Guchhait S., Biswas D., Bhattacharya P., Chowdhury R. - Bio-desulfurization of model organo-sulfur compounds and hydrotreated diesel–experiments and modeling, Chem. Eng. J. 112 (2005) 145-151. doi: 10.1016/j.cej.2005.05.006.
8. Shen Y., Li P., Xu X., Liu H. - Selective adsorption for removing sulfur: a potential ultra-deep desulfurization approach of jet fuels, RSC Adv. 2 (2012) 1700-1711, doi: 10.1039/C1RA00944C.
9. Ma X., Zhou A., Song C. - A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption, Catal. Today 123 (2007) 276-284. doi: 10.1016/j.cattod.2007.02.036.
10. Zhao D., Wang J., Zhou E. - Oxidative desulfurization of diesel fuel using a Brønsted acid room temperature ionic liquid in the presence of H2O2, Green Chemistry 9 (2007) 1219-1222. doi: 10.1039/B706574D.
11. Lü H., Gao J., Jiang Z., Yang Y., Song B., Li C. - Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis, Chem. Comm 2 (2007) 150-152. doi: 10.1080/10916460903030441.
12. Pham X. N., Nguyen M. B., Ngo H. S., Doan H. V. - Highly efficient photocatalytic oxidative desulfurization of dibenzothiophene with sunlight irradiation using green catalyst of Ag@AgBr/Al-SBA-15 derived from natural halloysite. J. Ind. Eng. Chem. 90 (2020) 358-370. doi: 10.1016/j.jiec.2020.07.037.
13. Pham X. N., Nguyen M. B., Doan H. V. - Direct synthesis of highly ordered Ti-containing Al-SBA-15 mesostructured catalysts from natural halloysite and its photocatalyticactivity for oxidative desulfurization of dibenzothiophene. Adv. Powder Tech. 31 (2020) 3351-3360. doi: 10.1016/j.apt.2020.06.028.
14. Feng L., Yongna Z., Lu W., Yuliang Z., Donge W., Min Y., Jinhui Y., Boyu Z. and Zongxuan J. and Can L.- Highly efficient photocatalytic oxidation of sulfur-containing organic compounds and dyes on TiO2 with dual cocatalysts Pt and RuO2, Appl. Catal. B 127 (2012) 363-370. doi: 10.1016/j.apcatb.2012.08.024.
15. Aazam E. S. - Photocatalytic oxidation of cyanide under visible light by Pt doped AgInS2 nanoparticles, J. Ind. Eng. Chem. 20 (2014) 4008-4013. doi: 10.1016/j.jiec.2013.12.104.
16. Liang Q., Zhang C., Xu S., Zhou M., Li Z. - Nanocomposites based on 3D honeycomb-like carbon nitride with Cd0.5Zn0.5S quantum dots for efficient photocatalytic hydrogen evolution, Int. J. Hydrogen Energy 44 (2019) 29964-29974. doi:10.1016/ j.ijhydene.2019.09.180.
17. Boon-Junn N., Putri L. K., Kong X. Y., Pasbakhsh P., Chai S. P. - Overall pure water splitting using one-dimensional P-doped twinned Zn0.5Cd0.5S1-x nanorods via synergetic combination of long-range ordered homojunctions and interstitial S vacancies with prolonged carrier lifetime, Appl. Catal. B 262 (2020) 118309. doi:10.1016/ j.apcatb.2019.118309.
18. Haifeng L., Bowen S., Hui W., Qinqin R., Yanling G., Yanyan L., Jiakun W., Wenjing W., Jie L., Xun W. - Unique 1D Cd1−xZnxS@O‐MoS2/NiOx nanohybrids: Highly efficient visible‐light‐driven photocatalytic hydrogen evolution via integrated structural regulation, Small 15 (2019) 1804115. doi: 10.1002/smll.201804115.
19. Choi Y., Beak M., Yong K. - Solar-driven hydrogen evolution using a CuInS2/CdS/ZnO heterostructure nanowire array as an efficient photoanode, Nanoscale 6 (2014) 8914-8918, doi:10.1039/c4nr01632g.
20. Jing H., Mélina G. G., Bo X., Palas B. P., Ahmed S. E., Lei T., Junliang S., Leif H., Haining T. - Covalently linking CuInS2 quantum dots with a Re catalyst by click reaction for photocatalytic CO2 reduction, Dalton Trans. 47 (2018) 10775-10783. doi:10.1039/c8dt01631c.
21. Sandroni M., Gueret R., Wegner K. D., Reiss P., Fortage J., Aldakov D., Collomb M.-N. - Cadmium-free CuInS2/ZnS quantum dots as efficient and robust photosensitizers in combination with a molecular catalyst for visible light-driven H2 production in water, Energy Environ. Sci. 11 (2018) 1752-1761. doi: 10.1039/C8EE00120K.
22. Yong-Jun Y., Da-Qin C., Yan-Wei H., Zhen-Tao Y., Jia-Song Z., Ting-Ting C., Wen-Guang T., Zhong-Jie G., Da-Peng C., Zhi-Gang Z. - MoS2 nanosheet‐modified CuInS2 photocatalyst for visible‐light‐driven hydrogen production from water, Chem. Sus. Chem. 9 (2016) 1003-1009. doi:10.1002/cssc.201600006.
23. Sheng L., Jun K., Mengqian Y., Qi Z., Peng X., Lidan D., Shaobin W. - CuInS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants, Appl. Catal. B 221 (2018) 215-222, doi: 10.1016/j.apcatb.2017.09.028.
24. Liu L., Li H., Liu Z., Xie Y. H. - The conversion of CuInS2/ZnS core/shell structure from type I to quasi-type II and the shell thickness-dependent solar cell performance, J. Colloid Interface Sci. 546 (2019) 276-284. doi:10.1016/j.jcis.2019.03.075.
25. Ilaiyaraja P., Das T. K., Mocherla P. S. V., Sudakar C. - Optical whispering gallery-enabled enhanced photovoltaic efficiency of CdS–CuInS2 thin film-sensitized whisperonic solar cells, J. Phys. Chem. C 123 (2019) 1579-1586. doi: 10.1021/acs.jpcc.8b09292.
26. Thuy N. T. M., Chi T. T. K., Thuy U. T. D., Liem N. Q. - Low-cost and large-scale synthesis of CuInS2 and CuInS2/ZnS quantum dots in diesel, Opt. Mater. 37 (2014) 823-827. doi:10.1016/j.optmat.2014.09.016.
27. Hosseinpour-Mashkani S. M., Salavati-Niasari M., Mohandes F. - CuInS2 nanostructures: Synthesis, characterization, formation mechanism and solar cell applications, J. Ind. Eng. Chem. 20 (2014) 3800-3807. doi:10.1016/j.jiec.2013.12.082.
28. Xiaofei F., Junwu T., Zizhou Z., Siwen S., Lin Z., Zuming H., Yong G., Yongmei X. - Interfacial S–O bonds specifically boost Z-scheme charge separation in a CuInS2/In2O3heterojunction for efficient photocatalytic activity, RSC Adv. 13 (2023) 8227-8237. doi:10.1039/d3ra00043e.
29. Mousavi-Kamazani M., Salavati-Niasari M., Emadi H. - Preparation of stochiometric CuInS2 nanostructures by ultrasonic method, Micro. Nano Lett. 7 (2012) 896-900. doi:10.1049/mnl.2012.0393.
30. Nawapong C., Watcharapong P., Auttaphon C., Tawanwit L., Chamnan R., Burapat I., Athipong N., Sulawan K. - Photocatalytic activity of CuInS2 nanoparticles synthesized via a simple and rapid microwave heating process, Mater. Res. Express 7 (2020) 015074. doi:10.1088/2053-1591/ab6885.
31. Xie D., He Q., Su Y., Wang T., Xu R., Hu B. - Oxidative desulfurization of dibenzothiophene catalyzed by peroxotungstate on functionalized MCM-41 materials using hydrogen peroxide as oxidant, Chinese J. Catal. 36 (2015) 1205-1213. doi:10.1016/S1872-2067(15)60897-X.
32. Zhang J., Zhao D., Yang L., Li Y. - Photocatalytic oxidation dibenzothiophene using TS-1, J. Chem. Eng. 156 (2010) 528-531. doi:10.1016/j.cej.2009.04.032.
33. Lorena P. R., Verónica A. V., Brenda C. L., María V. P., María L. M., Oscar A. A.,
Andrea R. B. - Sulfur elimination by oxidative desulfurization with titanium-modified SBA-16, Catal. Today 271 (2016) 102-113. doi:10.1016/j.cattod.2015.07.055
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.