Green synthesis of nanostructured 1T/2H-MoS2 hybrid phase with polyol solvents and microwave heating

Author affiliations

Authors

  • Nguyen Thi Minh Nguyet VNU-HCM Key Laboratory for Material Technologies, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0003-0088-550X
  • Vuong Vinh Dat Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0003-3216-3691
  • Nguyen Huu Huy Phuc Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0001-8793-6132
  • Le Van Thang VNU-HCM Key Laboratory for Material Technologies, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/18507

Keywords:

nano MoS2, hybrid phase 1T/2H-MoS2, polyol solvents, microwave synthesis, green chemistry

Abstract

Green synthesis approaches have attracted greatly of attention in recent years since they address the issues associated with sustainability than conventional synthesis methods. New research fields in green nanoscience are being developed as a result of the incorporation of green chemistry principles into nanoscience. In this paper, the successful microwave-assisted green synthesis of MoS2 nanoparticles in a single pot using polyol solvents such as ethylene glycol and glycerol is demonstrated. The coexistence of 1T and 2H phases in MoS2 nanomaterials was determined using advanced techniques such as XRD, Raman, XPS, and TEM images. The highest 1T proportion obtained was 84.5% when compared to the 2H phase. The reaction mechanism and the phase transition between 1T and 2H were described and illustrated. The role of polyol solvents in the practical synthesis of nano MoS2 under microwave heating is also evaluated and explained. Due to the ability of the metallic 1T phase to enhance electrical conductivity, it is believed that hybrid nanostructures exhibit superior electrochemical performance for energy storage and conversion applications.

Downloads

Download data is not yet available.

References

1. Wang D., Zhang X., Bao S., Zhang Z., Fei H., and Wu Z. - Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution, J. Mater. Chem. A 9 (6) (2017) 2681-2688. https://doi.org/10.1039/C6TA09409K.

2. Tang Q. and Jiang D. E. - Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles, ACS Catal. 6 (8) (2016) 4953-4961. https://doi.org/10.1021/ acscatal.6b01211

3. Damien Voiry M. S., Silva R., Fujita T., Chen M., Asefa T., Shenoy Vivek B., Eda G., and Chhowalla M. - Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction, Nano Lett. 13 (12) (2013) 6222-6227. https://doi.org/10.1021/nl403661s

4. Yang J., Wang K., Zhu J., Zhang C., and Liu T. - Self-Templated Growth of Vertically Aligned 2H-1T MoS2 for Efficient Electrocatalytic Hydrogen Evolution, ACS Appl. Mater. Interfaces. 8 (46) (2016) 31702-31708. https://doi.org/10.1021/ acsami.6b11298

5. Zhou Y. et al. - Rational design and synthesis of 3D MoS2 hierarchitecture with tunable nanosheets and 2H/1T phase within graphene for superior lithium storage, Electrochim. Acta. 211 (2016)1048-1055. https://doi.org/10.1016/j.electacta.2016.06.123

6. Wu M. et al. - Metallic 1T MoS2 nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance, J. Mater. Chem. A 5 (27) (2017) 14061-14069.https://doi.org/10.1039/C7TA03497K

7. Wang D., Xiao Y., Luo X., Z. Wu, Wang Y.-J., and Fang B. - Swollen Ammoniated MoS2 with 1T/2H Hybrid Phases for High-Rate Electrochemical Energy Storage, ACS Sustain Chem Eng., 5 (3) (2017) 2509-2515. https://doi.org/10.1021/acssuschemeng.6b02863

8. Jiang L. et al. - Optimizing Hybridization of 1T and 2H Phases in MoS2 Monolayers to Improve Capacitances of Supercapacitors, Mater. Res. Lett. 3 (4) (2015) 177-183. https://doi.org/10.1080/21663831.2015.1057654

9. Huang H. et al. - Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting, Nano Energy 26 (2016) 172-179. https://doi.org/10.1016/ j.nanoen.2016.05.022

10. Hsiao M. C. et al. - Ultrathin 1T-phase MoS2 nanosheets decorated hollow carbon microspheres as highly efficient catalysts for solar energy harvesting and storage, J. Power Sources 345 (2017) 156-164. https://doi.org/10.1016/j.jpowsour.2017.01.132

11. Gigot A. et al. - Mixed 1T–2H Phase MoS2/Reduced Graphene Oxide as Active Electrode for Enhanced Supercapacitive Performance, ACS Appl. Mater. Interfaces., 8 (48) (2016) 32842-32852. https://doi.org/10.1021/acsami.6b11290

12. Zhang Y., Kuwahara Y., Mori K., Louis C., and Yamashita H., - Hybrid phase 1T/2H-MoS2 with controllable 1T concentration and its promoted hydrogen evolution reaction, Nanoscale 12 (22) (2020) 11908-11915. https://doi.org/10.1039/D0NR02525A

13. Geng X. et al. - Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction, Nat. Commun. 7 (1) (2016) 10672. https://doi.org/10.1038/ ncomms10672

14. Lei Z., Zhan J., Tang L., Zhang Y., and Wang Y. - Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage, Adv. Energy Mater.8 (19) 1703482 (2018). https://doi.org/10.1002/aenm.201703482

15. Liu Q. et al. - Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS2: Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution, Small11 (41) (2015) 5556-5564. https://doi.org/10.1002/smll.201501822

16. Chen Y.X., Wu C.W., Kuo T.Y., Chang Y.L., Jen M.H., and Chen I. W. P. - Large-Scale Production of Large-Size Atomically Thin Semiconducting Molybdenum Dichalcogenide Sheets in Water and Its Application for Supercapacitor, Sci. Rep. 6 (1) (2016)26660. https://doi.org/10.1038/srep26660

17. Ali M. E. M., Mohammed R., Abdel-Moniem S. M., El-Liethy M. A., and Ibrahim H. S. - Green MoS2 nanosheets as a promising material for decontamination of hexavalent chromium, pharmaceuticals, and microbial pathogen disinfection: spectroscopic study, J Nanopart Res. 24 (10) (2022). https://doi.org/10.1007/s11051-022-05573-6

18. Pallikkarathodi Mani N. and Cyriac J. - Green approach to synthesize various MoS2 nanoparticles via hydrothermal process, Bull. Mater. Sci.,45 (4) (2022). https://doi.org/10.1007/s12034-022-02757-7

19. Madani M. et al. - Green synthesis of nanoparticles for varied applications: Green renewable resources and energy-efficient synthetic routes, Nanotechnol. Rev.11 (1) (2022) 731-759. https://doi.org/10.1515/ntrev-2022-0034

20. Priecel P. and Lopez-Sanchez J. A. - Advantages and Limitations of Microwave Reactors: From Chemical Synthesis to the Catalytic Valorization of Biobased Chemicals, ACS Sustain Chem Eng.7 (1) (2019) 3-21. https://doi.org/10.1021/acssuschemeng.8b03286

21. Dong H., Chen Y. C., and Feldmann C. - Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements, Curr. Green Chem. 17 (8) (2015) 4107-4132. https://doi.org/10.1039/C5GC00943J

22. Collins T. J. - Review of the twenty-three year evolution of the first university course in green chemistry: teaching future leaders how to create sustainable societies, J. Clean. Prod.140 (2017)93-110. https://doi.org/10.1016/j.jclepro.2015.06.136

23. Castillo-Henriquez L., Alfaro-Aguilar K., Ugalde-Alvarez J., Vega-Fernandez L., Montes de Oca-Vasquez G., and Vega-Baudrit J. R. - Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area, Nanomaterials (Basel) 10 (9) (2020). https://doi.org/ 10.3390/nano10091763

24. Waskito I. S., Kurniawan B., Amal M. I., and Hanifuddin M. - The Effect of Precursors Concentration on the Structural Properties of MoS2 Nanosheet-Microsphere Synthesized Via Hydrothermal Route, IOP Conf. Ser. Mater. Sci. Eng.546 (2019). http://dx.doi.org/10.1088/1757-899X/546/4/042048

25. Wang F., Li G., Zheng J., Ma J., Yang C., and Wang Q. - Hydrothermal synthesis of flower-like molybdenum disulfide microspheres and their application in electrochemical supercapacitors, RSC Adv.8 (68) 92018) 38945-38954. https://doi.org/10.1039/ C8RA04350G

26. Suo Xia Hou C. W., Jie Huo Y. - Controllable Preparation of Nano Molybdenum Disulfide by Hydrothermal Method, Ceram. - Silik.,61 (2) (2017) 158 - 162, 2017. https://doi.org/10.13168/cs.2017.0011

27. Saber M., Khabiri G., Khabiri A. M., Ulbricht M., Khalil A., and M. R - A comparative study on the photocatalytic degradation of organic dyes using hybridized 1T/2H, 1T/3R and 2H MoS2 nano-sheets, RSC Adv.8 (2018)26364-26370. https://doi.org/10.1039/ C8RA05387A

28. Saseendran S. B., Ashok A., and A. A S - Edge terminated and interlayer expanded pristine MoS2 nanostructures with 1T on 2H phase, for enhanced hydrogen evolution reaction, Int. J. Hydrogen Energy.47 (16) (2022) 9579-9592. https://doi.org/10.1016/ j.ijhydene.2022.01.031

29. Das S., Swain G., and Parida K. - One step towards the 1T/2H-MoS2 mixed phase: a journey from synthesis to application, Mater. Chem. Front.5 (5) (2021) 2143-2172. https://doi.org/10.1039/D0QM00802H

30. Das S., Swain G., and Parida K. - One step towards the 1T/2H-MoS2 mixed phase: a journey from synthesis to application, Mater. Chem. Front.5 (5) (2021) 2143-2172. https://doi.org/10.1039/D0QM00802H

31. Wang H. W., Skeldon P., and Thompson G. E. - XPS studies of MoS2 formation from ammonium tetrathiomolybdate solutions, Surf. Coat. Int.91 (3) (1997) 200-207. https://doi.org/10.1016/S0257-8972(96)03186-6

32. John F. Moulde W. F. S., Peter E. S., Kenneth Bomben D. - Handbook of X-ray photoelectron spectroscopy, 1992

33. Cheng P., Sun K., and Hu Y. H. - Memristive Behavior and Ideal Memristor of 1T Phase MoS2 Nanosheets, Nano Lett.16 (1) (2016) 572-576. https://doi.org/10.1021/ acs.nanolett.5b04260

34. Hou M. et al. - Aging mechanism of MoS2 nanosheets confined in N-doped mesoporous carbon spheres for sodium-ion batteries, Nano Energy62 (2019) 299-309. https://doi.org/ 10.1016/j.nanoen.2019.05.048

35. Gao X., Xiong L., Wu J., Wan J., and Huang L. - Scalable and controllable synthesis of 2D high-proportion 1T-phase MoS2, Nano Research13 (11) (2020) 2933-2938. https://doi.org/10.1007/s12274-020-2950-2

36. Xin X. et al. - In-situ growth of high-content 1T phase MoS2 confined in the CuS nanoframe for efficient photocatalytic hydrogen evolution, Appl. Catal. B: Enviro.269 (2020) 118773. https://doi.org/10.1016/j.apcatb.2020.118773

37. Feng D., Pan X., Xia Q., Qin J., Zhang Y., and Chen X. - Metallic MoS2 nanosphere electrode for aqueous symmetric supercapacitors with high energy and power densities, J. Mater. Sci.55 (2020) 1-11. https://doi.org/10.1007/s10853-019-03997-5

38. Yu Y. et al. - High phase purity 1T'-MoS2 and 1T'-MoSe2 layered crystals, Nat. Chem.10 (6) (2018) 638-643. https://doi.org/10.1038/s41557-018-0035-6

39. Wei J. et al. - Synthesis of Few Layer Amorphous 1T/2H MoS2 by a One-Step Ethanol/Water Solvothermal Method and Its Hydrodesulfurization Performance, Catal. Letters152 (1) (2021) 263-275. https://doi.org/10.1007/s10562-021-03621-9

40. Wang S., Luo Y., Fan Y., Ali A., Liu Z., and Kang Shen P. - Uniformly distributed 1T/2H-MoS2 nanosheets integrated by melamine foam-templated 3D graphene aerogels as efficient polysulfides trappers and catalysts in lithium-sulfur batteries, J. Electroanal.Chem.909 (2022). https://doi.org/10.1016/j.jelechem.2022.116099

41. Agrawal A. V. et al. - Controlled Growth of MoS2 Flakes from in-Plane to Edge-Enriched 3D Network and Their Surface-Energy Studies, ACS Appl. Nano Mater.1 (5) (2018) 2356-2367. https://doi.org/10.1021/acsanm.8b00467

42. Kim J. S. et al. - Electrical Transport Properties of Polymorphic MoS2, ACS Nano,10 (8) (2016 7500-7506. https://doi.org/10.1021/acsnano.6b02267

43. Lee Y. B. et al. - Facile microwave assisted synthesis of vastly edge exposed 1T/2H-MoS2 with enhanced activity for hydrogen evolution catalysis, J. Mater. Chem.7 (8) (2013) 3563-3569. https://doi.org/10.1039/C8TA12080C

44. Cai L. et al. - High-Content Metallic 1T Phase in MoS2-Based Electrocatalyst for Efficient Hydrogen Evolution, J. Phys. Chem. C121 (28) (2017) 15071-15077,. https://doi.org/ 10.1021/acs.jpcc.7b03103

45. Guo X., Wang Z., Zhu W., and Yang H. - The novel and facile preparation of multilayer MoS2 crystals by a chelation-assisted sol–gel method and their electrochemical performance, RSC Adv. 7 (15) (2017) 9009-901. https://doi.org/10.1039/C6RA25558B

46. Wojnarowicz J. et al. - Effect of Water Content in Ethylene Glycol Solvent on the Size of ZnO Nanoparticles Prepared Using Microwave Solvothermal Synthesis, J. Nanomater. 2016 (2016) 1-15. https://doi.org/10.1155/2016/2789871

47. Zheng Y. et al. - The effect of lithium adsorption on the formation of 1T-MoS2 phase based on first-principles calculation, Phys. Lett. A 380 (20) (2016) 1767-1771. https://doi.org/10.1016/j.physleta.2016.03.009

Downloads

Published

24-07-2024

How to Cite

[1]
T. M. N. Nguyen, Vuong Vinh Dat, Nguyen Huu Huy Phuc, and Le Van Thang, “Green synthesis of nanostructured 1T/2H-MoS2 hybrid phase with polyol solvents and microwave heating ”, Vietnam J. Sci. Technol., vol. 63, no. 5, pp. 972–984, Jul. 2024.

Issue

Section

Materials

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 > >> 

You may also start an advanced similarity search for this article.