Effect of rice husk morphology on the ability to synthesize silicon carbide by pyrolysis method
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/18511Keywords:
Silicon Carbide, rice husk, pyrolysis, SiC/SiO2/C compositeAbstract
Silicon carbide (SiC) is a mineral with good technical properties and high economic value. However, the synthesis of SiC is expensive because it is synthesized at a high-temperature environment (above 1500oC). The synthesis of SiC from biomass can significantly reduce the synthesis temperature. One commonly used biomass material for synthesizing SiC is rice husk. However, the ability to synthesize SiC depends on the shape of the rice husk. The influence of the morphology of rice husk on the ability to synthesize SiC was studied in this study. Experimental results showed that the original rice husk would give better SiC formation capacity than the rice husk powder. The amount of SiC formed using the original rice husk when impregnated by sodium silicate solution and pyrolysis at 1200oC is 18.3% (wt%.). With rice husk powder, it is 15.12% (wt%.). The results of analysis of the mineral composition, functional groups, and morphologies by X-ray diffraction (XRD), Fourier Infrared Transform Method (FT-IR), and Scanning Electron Microscopy (SEM) found that the polymorphy of SiC is α-SiC and β-SiC. These minerals are the basis for SiC from rice husks, which can be applied as wear-resistant materials.
Downloads
References
1. Neudeck P. G. - Progress in silicon carbide semiconductor electronics technology, J. Electron. Mater. 24 (1995) 283-288. https://doi.org/10.1007/BF02659688
2. Kong X., Nie R., and Yuan J. - Shape stabilized three-dimensional porous SiC-based phase change materials for thermal management of electronic components, Chem. Eng. J. 462 (2023) 142168. https://doi.org/10.1016/j.cej.2023.142168
3. Singh S., Chaudhary T., and Khanna G. - Recent advancements in wide band semiconductors (SiC and GaN) technology for future devices, Silicon 14 (11) (2022) 5793-5800, 2022. https://doi.org/10.1007/s12633-021-01362-3
4. Alves L. F. S, Gomes R. C. M., Lefranc P., Pegado R. D. A., Jeannin P. O. Luciano B. A., and Rocha F. V. - SIC power devices in power electronics: An overview, Brazilian Power Electronics Conference (COBEP), Barzil, 2017, pp. 1-8. https://doi.org/10.1109/COBEP.2017.8257396
5. Edmond J. A., Kong H. S., and Carter Jr C. H. - Blue LEDs, UV photodiodes and high-temperature rectifiers in 6H-SiC, Phys. B (Amsterdam, Neth.) 185 (1-4) (1993) 453-460. https://doi.org/10.1016/0921-4526(93)90277-D
6. Feng D. H., Jia T. Q., Li X. X., Xu Z. Z., Chen J., Deng S. Z., Wu Z. S., and Xu N. S. - Catalytic synthesis and photoluminescence of needle-shaped 3C–SiC nanowires, Solid State Commun. 128 (8) (2003) 295-297. https://doi.org/10.1016/j.ssc.2003.08.025
7. J. Edmond J., Abare A., Berman M., Bharathan J., Bunker K. L., Emerson D., Haberern K., Ibbetson J., Leung M., Russel P., and Slater D. - High efficiency GaN-based LEDs and lasers on SiC, J. Cryst. Growth 272 (1-4) (2004) 242-250. https://doi.org/10.1016/j.jcrysgro.2004.08.056
8. Ni Z., Lyu X., Yadav O. P., Singh B. N., Zheng S., and Cao D. - Overview of real-time lifetime prediction and extension for SiC power converters, IEEE T. Power Electr. 35 (8) (2019) 7765-7794. https://doi.org/10.1109/TPEL.2019.2962503
9. Louro P., Vieira M., Fernandes M., Costa J., Vieira M. A., Caeiro J., Neves N., and Barata M. - Optical demultiplexer based on an a‐SiC: H voltage controlled device, Phys. Status Solidi C 7 (3‐4) (2010) 1188-1191. https://doi.org/10.1002/pssc.200982702
10. Prasad K. E. and Ramesh K. - Hardness and mechanical anisotropy of hexagonal SiC single crystal polytypes, J. Alloys Compd. 770 (2019) 158-165. https://doi.org/10.1016/j.jallcom.2018.08.102
11. Su L., Wang H., Niu M., Fan X., Ma M., Shi Z., and GUo S. W. - Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel, ACS nano 12 (4) (2018) 3103-3111. https://doi.org/10.1021/acsnano.7b08577
12. Wang H. F., Bi Y. B., Zhou N. S., and Zhang H. J. - Preparation and strength of SiC refractories within situ β-SiC whiskers as bonding phase, Ceram. Int. 42 (1) (2016) 727-733. https://doi.org/10.1016/j.ceramint.2015.08.172
13. Borrero-López O., Ortiz A. L., Guiberteau F. , and Padture N. P. - Microstructural design of sliding-wear-resistant liquid-phase-sintered SiC: an overview, J. Eur. Ceram. Soc. 27 (11) (2007) 3351-3357. https://doi.org/10.1016/j.jeurceramsoc.2007.02.190
14. Spitsberg I. and Steibel J. - Thermal and environmental barrier coatings for SiC/SiC CMCs in aircraft engine applications, Int. J. Appl. Ceram. Technol. 1 (4) (2004) 291-301. https://doi.org/10.1111/j.1744-7402.2004.tb00181.x
15. Kien K. D. T., Thuy D. D. X., Nhi N. V. U., and Minh D. Q. - The formation of red copper Glaze in an Oxidizing Atmosphere, Iran. J. Mater. Sci. Eng. 20 (3) (2023) 1-9. https://doi.org/10.22068/ijmse.3141
16. Ta Q. T. H., Tran, N. M., and Noh J. S. - Pressureless manufacturing of Cr2AlC compound and the temperature effect, Mater. Manuf. Processes 36 (2) (2021) 200-208. https://doi.org/10.1080/10426914.2020.1819547
17. Krishnarao R., Godkhindi M., Chakraborty M., and Mukunda P. - Formation of SiC whiskers from compacts of raw rice husks, J. Mater. Sci. 29 (1994) 2741-2744. https://doi.org/10.1007/BF00356826
18. Khai T. V., Minh H. N., Nhi N. V. U., and Kien K. D. T. - Effect of composition on the ability to form SiC/SiO2-C composite from rice husk and silica gel, J. Ceram. Process. Res. 22 (2) (2021) 246-251. https://doi.org/10.36410/jcpr.2021.22.2.246
19. Khangkhamano M., Singsarothai S., Kokoo R., and Niyomwas S. - Conversion of bagasse ash waste to nanosized SiC powder, Int. J. Self-Propag. High-Temp. Synth. 27 (2018) 98-102. https://doi.org/10.3103/S1061386218020103
20. Bringas-Rodríguez V., Huamán-Mamani F., Paredes-Paz J., and Gamarra-Delgado J. - Evaluation of thermomechanical behavior in controlled atmospheres of silicon carbide obtained from sawdust residues of the Peruvian timber industry, Mater. Today: Proc. 33 (2020) 1835-1839. https://doi.org/10.1016/j.matpr.2020.05.175
21. Dinh T. D., Nguyen Q. L., Vu M. D., Tran T. M. H., Tran T. H. N, Nguyen M. H., and Pham T. D. - Adsorption characteristics of Cu2+ on CeO2/SiO2 nanomaterials based on rice husk and its application to pre-concentration and determination in food samples, Colloid Polym. Sci. (2023). https://doi.org/10.1007/s00396-023-05140-y
22. Wang Y., Zhang L., Zhang X., Zhang Z., Tong Y., Li F., Wu J. C. S., and Wang X. - Openmouthed β-SiC hollow-sphere with highly photocatalytic activity for reduction of CO2 with H2O, Appl. Catal. B 206 (2017) 158-167. https://doi.org/10.1016/j.apcatb.2017.01.028
23. Goto T. and Homma H. - High-temperature active/passive oxidation and bubble formation of CVD SiC in O2 and CO2 atmospheres, J. Eur. Ceram. Soc. 22 (14-15) (2022) 2749-2756. https://doi.org/10.1016/S0955-2219(02)00139-5
24. King S., French M., Bielefeld J., and Lanford W. - Fourier transform infrared spectroscopy investigation of chemical bonding in low-k a-SiC: H thin films, J. Non-Cryst. Solids 357 (15) (2011) 2970-2983. https://doi.org/10.1016/j.jnoncrysol.2011.04.001
25. Kien K. D. T., Tuan P. D., Okabe T., Minh D. Q., and Khai T. V. - Study on sintering process of woodceramics from the cashew nutshell waste, J. Ceram. Process. Res. 19 (6) (2018) 472-478.
26. Kien K. D. T., Minh D. Q., Minh H. N., and Nhi N. V. U. - Synthesis of TiO2-SiO2 from tetra-n-butyl orthotitanate and tetraethyl orthosilicate by the sol-gel method applied as a coating on the surface of ceramics, Ceramics–Silikáty 67 (1) (2023) 58-63. https://doi.org/10.13168/cs.2023.0002
27. Chiew Y. L. and Cheong K. Y. - A review on the synthesis of SiC from plant-based biomasses, Mater. Sci. Eng. B 176 (13) (2011) 951-964. https://doi.org/10.1016/j.mseb.2011.05.037
28. Fneich H., Vermillac M., Neuville D. R., Blanc W., and Mehdi A. - Highlighting of LaF3 reactivity with SiO2 and GeO2 at high temperature, Ceramics 5 (2) (2022) 182-200. https://doi.org/10.3390/ceramics5020016
29. Taylor N. W. and Lin C. Y. - Effect of various catalysts on conversion of quartz to cristobalite and tridymite at high temperatures, J. Am. Ceram. Soc. 24 (2) (1941) 57-63. https://doi.org/10.1111/j.1151-2916.1941.tb14821.x
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.
