Effect of rice husk morphology on the ability to synthesize silicon carbide by pyrolysis method

Author affiliations

Authors

  • Kieu Do Trung Kien https://orcid.org/0000-0001-8297-7832
  • Ong Dieu Hanh Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam https://orcid.org/0009-0006-9673-769X
  • Nguyen Hoang Thien Khoi Vietnam National University Ho Chi Minh City, Linh Xuan Ward, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0001-8992-3706
  • Huynh Ngoc Minh Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0002-2565-4129

DOI:

https://doi.org/10.15625/2525-2518/18511

Keywords:

Silicon Carbide, rice husk, pyrolysis, SiC/SiO2/C composite

Abstract

Silicon carbide (SiC) is a mineral with good technical properties and high economic value. However, the synthesis of SiC is expensive because it is synthesized at a high-temperature environment (above 1500oC). The synthesis of SiC from biomass can significantly reduce the synthesis temperature. One commonly used biomass material for synthesizing SiC is rice husk. However, the ability to synthesize SiC depends on the shape of the rice husk. The influence of the morphology of rice husk on the ability to synthesize SiC was studied in this study. Experimental results showed that the original rice husk would give better SiC formation capacity than the rice husk powder. The amount of SiC formed using the original rice husk when impregnated by sodium silicate solution and pyrolysis at 1200oC is 18.3% (wt%.). With rice husk powder, it is 15.12% (wt%.). The results of analysis of the mineral composition, functional groups, and morphologies by X-ray diffraction (XRD), Fourier Infrared Transform Method (FT-IR), and Scanning Electron Microscopy (SEM) found that the polymorphy of SiC is α-SiC and β-SiC. These minerals are the basis for SiC from rice husks, which can be applied as wear-resistant materials.

Downloads

Download data is not yet available.

References

1. Neudeck P. G. - Progress in silicon carbide semiconductor electronics technology, J. Electron. Mater. 24 (1995) 283-288. https://doi.org/10.1007/BF02659688

2. Kong X., Nie R., and Yuan J. - Shape stabilized three-dimensional porous SiC-based phase change materials for thermal management of electronic components, Chem. Eng. J. 462 (2023) 142168. https://doi.org/10.1016/j.cej.2023.142168

3. Singh S., Chaudhary T., and Khanna G. - Recent advancements in wide band semiconductors (SiC and GaN) technology for future devices, Silicon 14 (11) (2022) 5793-5800, 2022. https://doi.org/10.1007/s12633-021-01362-3

4. Alves L. F. S, Gomes R. C. M., Lefranc P., Pegado R. D. A., Jeannin P. O. Luciano B. A., and Rocha F. V. - SIC power devices in power electronics: An overview, Brazilian Power Electronics Conference (COBEP), Barzil, 2017, pp. 1-8. https://doi.org/10.1109/COBEP.2017.8257396

5. Edmond J. A., Kong H. S., and Carter Jr C. H. - Blue LEDs, UV photodiodes and high-temperature rectifiers in 6H-SiC, Phys. B (Amsterdam, Neth.) 185 (1-4) (1993) 453-460. https://doi.org/10.1016/0921-4526(93)90277-D

6. Feng D. H., Jia T. Q., Li X. X., Xu Z. Z., Chen J., Deng S. Z., Wu Z. S., and Xu N. S. - Catalytic synthesis and photoluminescence of needle-shaped 3C–SiC nanowires, Solid State Commun. 128 (8) (2003) 295-297. https://doi.org/10.1016/j.ssc.2003.08.025

7. J. Edmond J., Abare A., Berman M., Bharathan J., Bunker K. L., Emerson D., Haberern K., Ibbetson J., Leung M., Russel P., and Slater D. - High efficiency GaN-based LEDs and lasers on SiC, J. Cryst. Growth 272 (1-4) (2004) 242-250. https://doi.org/10.1016/j.jcrysgro.2004.08.056

8. Ni Z., Lyu X., Yadav O. P., Singh B. N., Zheng S., and Cao D. - Overview of real-time lifetime prediction and extension for SiC power converters, IEEE T. Power Electr. 35 (8) (2019) 7765-7794. https://doi.org/10.1109/TPEL.2019.2962503

9. Louro P., Vieira M., Fernandes M., Costa J., Vieira M. A., Caeiro J., Neves N., and Barata M. - Optical demultiplexer based on an a‐SiC: H voltage controlled device, Phys. Status Solidi C 7 (3‐4) (2010) 1188-1191. https://doi.org/10.1002/pssc.200982702

10. Prasad K. E. and Ramesh K. - Hardness and mechanical anisotropy of hexagonal SiC single crystal polytypes, J. Alloys Compd. 770 (2019) 158-165. https://doi.org/10.1016/j.jallcom.2018.08.102

11. Su L., Wang H., Niu M., Fan X., Ma M., Shi Z., and GUo S. W. - Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel, ACS nano 12 (4) (2018) 3103-3111. https://doi.org/10.1021/acsnano.7b08577

12. Wang H. F., Bi Y. B., Zhou N. S., and Zhang H. J. - Preparation and strength of SiC refractories within situ β-SiC whiskers as bonding phase, Ceram. Int. 42 (1) (2016) 727-733. https://doi.org/10.1016/j.ceramint.2015.08.172

13. Borrero-López O., Ortiz A. L., Guiberteau F. , and Padture N. P. - Microstructural design of sliding-wear-resistant liquid-phase-sintered SiC: an overview, J. Eur. Ceram. Soc. 27 (11) (2007) 3351-3357. https://doi.org/10.1016/j.jeurceramsoc.2007.02.190

14. Spitsberg I. and Steibel J. - Thermal and environmental barrier coatings for SiC/SiC CMCs in aircraft engine applications, Int. J. Appl. Ceram. Technol. 1 (4) (2004) 291-301. https://doi.org/10.1111/j.1744-7402.2004.tb00181.x

15. Kien K. D. T., Thuy D. D. X., Nhi N. V. U., and Minh D. Q. - The formation of red copper Glaze in an Oxidizing Atmosphere, Iran. J. Mater. Sci. Eng. 20 (3) (2023) 1-9. https://doi.org/10.22068/ijmse.3141

16. Ta Q. T. H., Tran, N. M., and Noh J. S. - Pressureless manufacturing of Cr2AlC compound and the temperature effect, Mater. Manuf. Processes 36 (2) (2021) 200-208. https://doi.org/10.1080/10426914.2020.1819547

17. Krishnarao R., Godkhindi M., Chakraborty M., and Mukunda P. - Formation of SiC whiskers from compacts of raw rice husks, J. Mater. Sci. 29 (1994) 2741-2744. https://doi.org/10.1007/BF00356826

18. Khai T. V., Minh H. N., Nhi N. V. U., and Kien K. D. T. - Effect of composition on the ability to form SiC/SiO2-C composite from rice husk and silica gel, J. Ceram. Process. Res. 22 (2) (2021) 246-251. https://doi.org/10.36410/jcpr.2021.22.2.246

19. Khangkhamano M., Singsarothai S., Kokoo R., and Niyomwas S. - Conversion of bagasse ash waste to nanosized SiC powder, Int. J. Self-Propag. High-Temp. Synth. 27 (2018) 98-102. https://doi.org/10.3103/S1061386218020103

20. Bringas-Rodríguez V., Huamán-Mamani F., Paredes-Paz J., and Gamarra-Delgado J. - Evaluation of thermomechanical behavior in controlled atmospheres of silicon carbide obtained from sawdust residues of the Peruvian timber industry, Mater. Today: Proc. 33 (2020) 1835-1839. https://doi.org/10.1016/j.matpr.2020.05.175

21. Dinh T. D., Nguyen Q. L., Vu M. D., Tran T. M. H., Tran T. H. N, Nguyen M. H., and Pham T. D. - Adsorption characteristics of Cu2+ on CeO2/SiO2 nanomaterials based on rice husk and its application to pre-concentration and determination in food samples, Colloid Polym. Sci. (2023). https://doi.org/10.1007/s00396-023-05140-y

22. Wang Y., Zhang L., Zhang X., Zhang Z., Tong Y., Li F., Wu J. C. S., and Wang X. - Openmouthed β-SiC hollow-sphere with highly photocatalytic activity for reduction of CO2 with H2O, Appl. Catal. B 206 (2017) 158-167. https://doi.org/10.1016/j.apcatb.2017.01.028

23. Goto T. and Homma H. - High-temperature active/passive oxidation and bubble formation of CVD SiC in O2 and CO2 atmospheres, J. Eur. Ceram. Soc. 22 (14-15) (2022) 2749-2756. https://doi.org/10.1016/S0955-2219(02)00139-5

24. King S., French M., Bielefeld J., and Lanford W. - Fourier transform infrared spectroscopy investigation of chemical bonding in low-k a-SiC: H thin films, J. Non-Cryst. Solids 357 (15) (2011) 2970-2983. https://doi.org/10.1016/j.jnoncrysol.2011.04.001

25. Kien K. D. T., Tuan P. D., Okabe T., Minh D. Q., and Khai T. V. - Study on sintering process of woodceramics from the cashew nutshell waste, J. Ceram. Process. Res. 19 (6) (2018) 472-478.

26. Kien K. D. T., Minh D. Q., Minh H. N., and Nhi N. V. U. - Synthesis of TiO2-SiO2 from tetra-n-butyl orthotitanate and tetraethyl orthosilicate by the sol-gel method applied as a coating on the surface of ceramics, Ceramics–Silikáty 67 (1) (2023) 58-63. https://doi.org/10.13168/cs.2023.0002

27. Chiew Y. L. and Cheong K. Y. - A review on the synthesis of SiC from plant-based biomasses, Mater. Sci. Eng. B 176 (13) (2011) 951-964. https://doi.org/10.1016/j.mseb.2011.05.037

28. Fneich H., Vermillac M., Neuville D. R., Blanc W., and Mehdi A. - Highlighting of LaF3 reactivity with SiO2 and GeO2 at high temperature, Ceramics 5 (2) (2022) 182-200. https://doi.org/10.3390/ceramics5020016

29. Taylor N. W. and Lin C. Y. - Effect of various catalysts on conversion of quartz to cristobalite and tridymite at high temperatures, J. Am. Ceram. Soc. 24 (2) (1941) 57-63. https://doi.org/10.1111/j.1151-2916.1941.tb14821.x

Downloads

Published

24-07-2024

How to Cite

[1]
K. D. T. Kien, H. Ong Dieu, K. Nguyen Hoang Thien, and M. Huynh Ngoc, “Effect of rice husk morphology on the ability to synthesize silicon carbide by pyrolysis method”, Vietnam J. Sci. Technol., vol. 63, no. 5, pp. 916–923, Jul. 2024.

Issue

Section

Materials

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.