The effect of Zn doping concentration on thermoelectric properties of CuAgSe

Thi Huong Nguyen, Van Quang Nguyen, Duoc Phan Nguyen Duc, Sunglae Cho, Van Cuong Phan
Author affiliations

Authors

  • Thi Huong Nguyen Department of Physics, Nha Trang University, Nha Trang 650000, Viet Nam https://orcid.org/0000-0001-9412-8563
  • Van Quang Nguyen Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
  • Duoc Phan Nguyen Duc Department of Physics, Nha Trang University, 02 Nguyen Dinh Chieu, Nha Trang 65000, Viet Nam https://orcid.org/0000-0003-2816-4157
  • Sunglae Cho Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
  • Van Cuong Phan Department of Physics, Nha Trang University, 02 Nguyen Dinh Chieu, Nha Trang 65000, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/18603

Keywords:

CuAgSe, doping, thermal conductivity, thermoelectricity, semiconductor

Abstract

CuAgSe is a potential thermoelectric material with high carrier mobility and ultralow lattice thermal conductivity. In this study, to improve the thermoelectric properties of CuAgSe, Zn was doped at different ratios (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.10) into Cu sites as the formula Cu1-xZnxAgSe. Zn-doping CuAgSe polycrystals were successfully fabricated by growth from the melt method. The crystal structure of CuAgSe samples was investigated by XRD. The effect of Zn-doping on the thermoelectric properties of CuAgSe samples was studied in the temperature range from 300 – 673 K. When doping Zn into CuAgSe samples, the lattice thermal conductivity reduces to about 0.3 W m-1 K-1 at 673 K and increases the electrical conductivity compared to undoped CuAgSe. Interestingly, the highest ZT value of  Cu0.94Zn0.06AgSe is about 0.69 at 673 K, 3.5 times compared to undoped CuAgSe.

Downloads

Download data is not yet available.

References

Hendricks, T.; Caillat, T.; Mori, T. - Keynote Review of Latest Advances in Thermoelectric Generation Materials, Devices, and Technologies 2022. Energies, 15 (2022), 7307. https://doi.org/10.3390/en15197307.

Biswas, K.; Ren, Z.; Grin, Y.; Lee, K. H.; Mori, T.; Chen, L. - Thermoelectric Materials Science and Technology toward Applications. Appl. Phys. Lett., 121 (2022), No. 070401. https://doi.org/10.1063/5.0115322.

Tan, G.; Ohta, M.; Kanatzidis, M. G. - Thermoelectric Power Generation: From New Materials to Devices. Philos. Trans. R. Soc. A, 377 (2019), No. 20180450. https://doi.org/10.1098/rsta.2018.0450.

Xiao, Y.; Zhao, L. D. - Charge and Phonon Transport in PbTe-Based Thermoelectric Materials. npj Quantum Mater., 3 (2018), No. 55. https://doi.org/10.1038/s41535-018-0127-y.

Pei, Y. L.; Wu, H.; Wu, D.; Zheng, F.; He, J. - High Thermoelectric Performance Realized in a BiCuSeO System by Improving Carrier Mobility through 3D Modulation Doping. J. Am. Chem. Soc., 136 (2014), 13902–13908. https://doi.org/10.1021/ja507945h.

Qian, X.; Wu, H.; Wang, D.; Zhang, Y.; Wang, J.; Wang, G.; Zheng, L.; Pennycook, S. J.; Zhao, L. D. - Synergistically Optimizing Interdependent Thermoelectric Parameters of N-Type PbSe through Alloying CdSe. Energy Environ. Sci., 12 (2019), 1969–1978. https://doi.org/10.1039/c8ee03386b.

Yang, Q.; Ming, C.; Qiu, P.; Zhou, Z.; Qiu, X.; Gao, Z.; Deng, T.; Chen, L.; Shi, X. - Incommensurately Modulated Structure in AgCuSe-Based Thermoelectric Materials for Intriguing Electrical, Thermal, and Mechanical Properties. Small, (2023) No. 2300699. https://doi.org/10.1002/smll.202300699.

Zuo, Y.; Liu, Y.; He, Q. P.; Song, J. M.; Niu, H. L.; Mao, C. J. - CuAgSe Nanocrystals: Colloidal Synthesis, Characterization and Their Thermoelectric Performance. J. Mater. Sci., 53 (2018), 14998–15008. https://doi.org/10.1007/s10853-018-2676-7.

Wang, X.; Qiu, P.; Zhang, T.; Ren, D.; Wu, L.; Shi, X.; Yang, J.; Chen, L. - Compound Defects and Thermoelectric Properties in Ternary CuAgSe-Based Materials. J. Mater. Chem. A, 3 (2015), 13662–13670. https://doi.org/10.1039/c5ta02721g.

Qiu, P. F.; Wang, X. B.; Zhang, T. S.; Shi, X.; Chen, L. D. - Thermoelectric Properties of Te-Doped Ternary CuAgSe Compounds. J. Mater. Chem. A, 3 (2015), 22454–22461. https://doi.org/10.1039/c5ta06780d.

Hong, A. J.; Li, L.; Zhu, H. X.; Zhou, X. H.; He, Q. Y.; Liu, W. S.; Yan, Z. B.; Liu, J. M.; Ren, Z. F. - Anomalous Transport and Thermoelectric Performances of CuAgSe Compounds. Solid State Ionics, 261 (2014), 21–25. https://doi.org/10.1016/j.ssi.2014.03.025.

Nguyen, T. H.; Nguyen, V. Q.; Pham, A. T.; Park, J. H.; Lee, J. E.; Lee, J. K.; Park, S.; Cho, S. - Carrier Control in CuAgSe by Growth Process or Doping. J. Alloys Compd., 852 (2021), No. 157094. https://doi.org/10.1016/j.jallcom.2020.157094.

Nguyen, T. H.; Nguyen, V. Q.; Park, J. H.; Tran, T. T.; Pham, A. T.; Park, S.; Rhyee, J. S.; Cho, S. - Raising n‑Type Thermoelectric Performance in (Te, Zn)-Codoped CuAgSe. ACS Appl. Energy Mater., 6 (2023), 6151−6156. https://doi.org/10.1021/acsaem.3c00683

Downloads

Published

25-06-2025

How to Cite

[1]
T. H. Nguyen, V. Q. Nguyen, D. Phan Nguyen Duc, S. Cho, and V. C. Phan, “The effect of Zn doping concentration on thermoelectric properties of CuAgSe”, Vietnam J. Sci. Technol., vol. 63, no. 3, pp. 495–501, Jun. 2025.

Issue

Section

Materials

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.