Lipid classes, fatty acid composition and antimicrobial properties of brown algae Lobophora tsengii D. Tien & Z. Sun collected at Bach Long Vi island

Dam Duc Tien, Dao Thi Kim Dung, Dang Thi Tuyet, Tran Thi Thu Thuy, Hoang Thi Minh Nguyet, Pham Quoc Long, Doan Lan Phuong
Author affiliations

Authors

  • Dam Duc Tien Institute of Marine Environment and Resources, Vietnam Academy of Science and Technology, 246 Da Nang, Hai Phong, Viet Nam
  • Dao Thi Kim Dung Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0009-0004-7989-7654
  • Dang Thi Tuyet Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Tran Thi Thu Thuy Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0000-0002-6770-3291
  • Hoang Thi Minh Nguyet 3Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0009-0006-8561-7350
  • Pham Quoc Long Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Doan Lan Phuong 3Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/18662

Keywords:

Lobophora tsengii, fatty acids, phospholipid class, antibacterial

Abstract

Lobophora tsengii D. Tien & Z. Sun is a brown algae species that was discovered for the first time in 2020 at Bach Long Vy island (Bailongwei), Hai Phong province, Vietnam, In this paper, the lipid classes, fatty acid composition, and antimicrobial activities of Lobophora tsengii D.Tien & Z.Sun were described. The unsaturated fatty acid content accounted for 53.11 % of the total fatty acids, of which arachidonic acid (AA) and eicosapentaenoic acid (EPA) contents reached 8% and 11.46%, respectively. The polar lipid (PL) was the highest content class (43.47 %) in total lipid. Interestingly, the polar lipid fraction contains only the four most abundant phospholipid classes in mammals: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylethanol amine (LPE). Among them, PE and PC contents are equivalent over 30 % and LPE content (18.86 %) is twice higher than PS content (9.29 %). Evaluation of microbial activities against seven microorganims strains indicated that the extract of L. tsengii showed a strong inhibition against Staphylococcus aureus with IC50 value of 54.95 ± 1.38 µg/ml.

 

Downloads

Download data is not yet available.

References

1. Hakim M. M. and Patel I. C. - A review on phytoconstituents of marine brown algae, Future J. Pharm. Sci. 6 (2020) 129. https://doi.org/10.1186/s43094-020-00147-6.

2. Kolanjinathan K., Ganesh P., Saranraj P. - Pharmacological importance of seaweeds: a review, World J. Fish. Marine Sci. 6 (1) (2014) 01-15. https://doi.org/10.5829/ idosi. wjfms.2014.06.01.76195.

3. Generalić M. I., Skroza D., Šimat V., Hamed I., Čagalj M. and Popović P. Z. - Phenolic content of brown algae (Pheophyceae) species: extraction, identification, and quantification, Biomol. 9 (6) (2019) 244. https://doi.org/10.3390/biom9060244.

4. Van Ginneken V. J., Helsper J. P., de Visser W., van Keulen H., and Brandenburg W. A. - Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas, Lipids in health and disease 10 (1) (2011) 1-8. doi:10.1186/1476-511X-10-104

5. Murakami K., Miyake Y., Sasaki S., Tanaka K., and Arakawa M. - Fish and n-3 polyunsaturated fatty acid intake and depressive symptoms: Ryukyus Child Health Study, Pediatrics. 126 (3) (2010) e623-e630. https://doi.org/10.1542/peds.2009-3277

6. Klevens R. M., Morrison M. A., Nadle J., Petit S., Gershman K., Ray S., ... and Active Bacterial Core surveillance (ABCs) MRSA Investigators - Invasive methicillin-resistant Staphylococcus aureus infections in the United States, Jama. 298 (15) (2007) 1763-1771. doi:10.1001/jama.298.15.1763.

7. Calder P. C. - Omega‐3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?, British journal of clinical pharmacology 75 (3) (2013) 645-662. https://doi.org/10.1111/j.1365-2125.2012.04374.x

8. Viso A. C., Pesando D., and Baby C. - Antibacterial and antifungal properties of some marine diatoms in culture, Botanica Marina 30 (1987) 41-45.

9. Desbois A. P., Mearns-Spragg A., and Smith V. J. - A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA), Marine Biotechnology 11 (1) (2009) 45-52. https://doi.org/10.1007/s10126-008-9118-5

10. Desbois A. P., Lebl T., Yan L., and Smith V. J. - Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum, Appl Microbiol Biotechnol 81 (2008) 755-764. https://doi.org/10.1007/s00253-008-1714-9

11. Saravanakumar D. E. M., Folb P. I., Campbell B. W., and Smith P. - Antimycobacterial Activity of the Red Alga Polysiphonia virgata, Pharmaceutical Biology 46 (4) (2008) 254-260.

12. Kellam S. J., Cannell R. J. P., Owsianka A. M., and Walker J. M. - Results of a large-scale screening programme to detect antifungal activity from marine and freshwater microalgae in laboratory culture, British Phycological Journal 23 (1) (1988) 45-47. https://doi.org/ 10.1080/00071618800650061

13. Rajamani K. and Somasundaram S. T. - Polyphenols from brown alga, Padina boergesenii (Allendar & Kraft) decelerates renal cancer growth involving cell cycle arrest and induction of apoptosis in renal carcinoma cells, Environ. Toxicol. 33 (11) (2018) 1135-1142 1-8. https://doi.org/10.1002/tox.22619.

14. Lee Y. S., Shin K. H., Kim B. K., and Lee S. - Anti-diabetic activities of fucosterol from Pelvetia siliquosa, Archives of pharmacal research 27 (2004) 1120-1122. https://doi.org/ 10.1007/BF02975115

15. Chakaborty K., Joseph D., and Praveen N. K. - Antioxidant activities and phenolic contents of three red seaweeds (division: Rhodophyta) harvested from the Gulf of Mannar of peninsular India, J. Food Sci. Technol. 52 (2015) 1924-1935. https://doi.org/10.1007/ s13197-013-1189-2.

16. Cumashi A., Ushakova N. A., Preobrazhenskaya M. E., D’Incecco A., Piccoli A., and Totani L. - A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds, Glycobiology 17 (2007) 541-552. https://doi.org/10.1093/glycob/cwm014.

17. Cox S., Gupta S., and Abu-Ghannam N. - Effect of different rehydration temperatures on the moisture, content of phenolic compounds, antioxidant capacity and textural properties of edible Irish brown seaweed, LWT-Food Sci. Technol. 47 (2012) 300-307. https:// doi.org/10.1016/j.lwt.2012.01.023.

18. Sabeena K. H. and Jacobsen C. - Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast, Food Chem. 138 (2013) 1670-1681. https:// doi.org/10.1016/j.foodchem.2012.10.078

19. Bennamara A., Abourrichi A., Berrada M., M’hamed C., Chaib N., Boudouma M. and Garneau X. F. - Methoxybifur-carenone: an antifungal and antibacterial meroditerpenoid from the brown alga Cystoseira tamariscifolia, Phytochem. 52 (1999) 37-40. https://doi.org/10.1016/S0031-9422(99)00040-0

20. Kim Y. C., An R. B., Yoon N. Y., Nam T. J. and Choi J. S. - Hepatoprotective constituents of the edible brown alga Ecklonia stolonifera on tacrine-induced cytotoxicity in hep G2 cells, Arch. Pharm. Res. 28 (12) (2005) 1376-1380. https://doi.org/ 10.1007/BF02977904

21. Parveen S. and Nadumane V. K. - Anti-angiogenesis and apoptogenic potential of the brown marine alga, Chnoospora minima, Future J. Pharmaceutical. Sci. 6 (1) (2020) 1-14. https:// doi.org/10.1186/s43094-020-00039-9.

22. Azam M. S., Choi J., Lee M. S., and Kim H. R. - Hypopigmenting effects of brown algae-derived phytochemicals: A review on molecular mechanisms, Marine Drugs 15 (10) (2017) 297. doi: 10.3390/md15100297.

23. Kim M. and Park M. - The Brown Algae Ishige sinicola Extract Ameliorates Ovariectomy-Induced Bone Loss in Rats and Suppresses Osteoclastogenesis through Downregulation of NFATc1/c-Fos, Nutrients 14 (9) (2022) 1683. doi:10.3390/ nu14091683.

24. Pangestuti R. and Kim S. K. – Neuroprotective effects of marines algae, Mar. Drugs 9 (2011) 803-818. https://doi.org/10.3390/md9050803.

25. Algaebase Taxonomy Browser - Genus: Lobophora. https://www.algaebase.org/ browse/taxonomy/#8716.

26. Sun Z., Dao M. D., Tran Q. T., and Dam D. T. - A new species Lobophora tsengii sp. nov.(Dictyotales; Phaeophyceae) from Bach Long Vy (Bailongwei) Island, Viet Nam, Journal of Oceanology and Limnology 39 (6) (2021) 2363-2369. https://doi.org/ 10.1007/s00343-020-0294-0.

27. Bligh E. G., Dyer W. J. - A rapid method of total lipid extraction and purification, Can. J. Biochem, Physicol. 37 (1959) 911-917. doi: 10.1139/o59-099.

28. Dinh Thi Kim Hoa, Phi Hung Nguyen, Doan Lan Phuong, Dang Thi Phuong Ly, Pham Minh Quan, Dao Thi Kim Dung, Valeria P Grigorchuk, Pham Quoc Long - Component and Content of Lipid Classes and Phospholipid Molecular Species of Eggs and Body of the Vietnamese Sea Urchin Tripneustes gratilla, Molecules 28 (9) (2023) 3721. doi:10.3390/molecules28093721.

29. Imbs A. B., Dang L. P., Rybin V. G., and Svetashev V. I. - Fatty acid, lipid class, and phospholipid molecular species composition of the soft coral Xenia sp. (Nha Trang Bay, the South China Sea, Viet Nam), Lipids 50 (6) (2015) 575-589. doi: 10.1007/s11745-015-4021-0

30. Vaskovsky V. E., Terekhova T. A. - HPTLC of phospholipid mixtures containing phosphatidylglycerol, J. High. Resolut. Chromatogr. Chromatogr. Commun. 2 (2) (1979) 671-672. https://doi.org/10.1002/jhrc.1240021107.

31. Sánchez-Machado D. I, López-Cervantes J., López-Hernández J., Paseiro-Losada P. - Fatty acids, total lipid, protein and ash contents of processed edible seaweeds, Food Chem. 85 (2004) 439-444. Doi: 10.1016/J.FOODCHEM.2003.08.001

32. Saito H., Xue C., Yamashiro R., Moromizato S. and Itabashi Y. - High polyunsaturated fatty acids levels in two subtropical macroalgae, Cladosiphon okamuranus and Caulerpa lentillifera, J. Phycol. 46 (2010) 665-673. https://doi.org/10.1111/j.1529-817.2010. 00848.x

33. Lűning K. - Introduction to vertical and geographical distribution. In: Seaweeds. Their Environment, Biogeography, and Ecophysiology (eds C Yarish, H Kirkman (1990), John Wiley & Sons, Inc., New York, 1990, pp. 3–21.

34. Hoa Dinh Thi Kim, Long Pham Quoc, Phi Hung Nguyen, Phuong Doan Lan and Thang Tran Dinh - Research on the component of lipid classes, fatty acid from egg and body of sea urchin Diadema savignyi (Audouin, 1809), Journal of Pharmacognosy and Phytochemistry 7 (1) (2018) 836-840, DOI: 10.15625/2525-2518/56/4A/12895.

35. Khotimchenko S. V., Vaskovsky V. E., Titlyanova T. V. - Fatty acids of marine algae from the Pacific coast of North California, Botanica Marina 45 (2002) 17–22.

36. Sarker S. D., Nahar L. and Kumarasamy Y. - Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals, Methods 42 (2007) 321-324. https://doi.org/ 10.1016/j.ymeth.2007.01.006.

37. Gosch B. J., Magnusson M., Paul N. A., and De Nys R. - Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts, GCB Bioenergy 4 (6) (2012) 919-930. https://doi.org/10.1111/j.1757-1707.2012.01175.x

38. Huerlimann R., de Nys R., Heimann K. - Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production, Biotechnology and Bioengineering 107 (2010) 245-257. https://doi.org/10.1002/bit.22809

39. Airanthi M. K. W. A., Sasaki N., Iwasaki S., Baba N., Abe M., Hosokawa M., Miyashita K. - Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver, J. Agric. Food Chem. 59 (8) (2011) 4156-4163. doi: 10.1021/jf104643b.

40. Se-Kwon Kim - Handbook of Marine Macroalgae: Biotechnology and Applied Phycology, John Wiley & Sons, 2011.

41. H. Poudyal, S. K. Panchal, L. C. Ward, and L. Brown - Effects

of ALA, EPA and DHA in high-carbohydrate, high-fat dietinduced metabolic syndrome in rats, Journal of Nutritional Biochemistry 24 (6) (2013) 1041-1052. DOI:10.1016/j.jnutbio.2012.07.014.

42. Mohammed Nurul Absar Khan, Seung-Je Yoon and Jae-Suk Choi - Anti-Edema Effects of Brown Seaweed (Undaria pinnatifida) Extract on Phorbol 12-Myristate 13-Acetate-Induced Mouse Ear Inflammation, The American Journal of Chinese Medicine 37 (2) (2009) 373-81. https://doi.org/10.1142/S0192415X09006837

43. Department of Health. Nutritional Aspects of Cardiovascular Disease, Report on Health and Social Subjects No.46, Her Majesty’s Stationery Office (HMSO), London, UK, 1994.

44. Jeromson S., Gallagher I., Galloway S., and Hamilton D. - Omega-3 fatty acids and skeletal muscle health, Mar. Drugs 13 (11) (2015) 6977-7004. doi: 10.3390/md13116977.

45. Jaworowska A. and Murtaza A. - Seaweed derived lipids are a potential anti-inflammatory agent: a review, International Journal of Environmental Research and Public Health 20 (1) (2022) 730.https://doi.org/10.3390/ijerph20010730

46. Lenoir G., Williamson P., Holthuis J. C. - On the origin of lipid asymmetry: the flip side of ion transport, Curr. Opin. Chem. Biol. 11 (6) (2007) 654-661. doi:10.1016/j.cbpa. 2007.09.008.

47. Echeverría F., Valenzuela R., Espinosa A., Bustamante A., Álvarez D., Gonzalez-Mañan D., ... and Videla L. A. - Reduction of high-fat diet-induced liver proinflammatory state by eicosapentaenoic acid plus hydroxytyrosol supplementation: involvement of resolvins RvE1/2 and RvD1/2, The Journal of nutritional biochemistry 63 (2019) 35-43. https://doi.org/10.1016/j.jnutbio.2018.09.012

48. Sun M., Dong J., Xia Y., and Shu R. - Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans, Microbial pathogenesis 107 (2017) 212-218. https://doi.org/ 10.1016/j.micpath.2017.03.040

49. Park, S., Lee, J. H., Kim, Y. G., Hu, L., and Lee, J. - Fatty acids as aminoglycoside antibiotic adjuvants against Staphylococcus aureus, Frontiers in Microbiology 13 (2022) 876932. https://doi.org/10.3389/fmicb.2022.876932

50. Ismail A., Ktari L., Ben Redjem Romdhane Y., Aoun B., Sadok S., Boudabous A., and El Bour M. - Antimicrobial fatty acids from green alga Ulva rigida (Chlorophyta), Bio. Med. Research International 12 (2018) 3069595.

Downloads

Published

25-06-2025

How to Cite

[1]
Dam Duc Tien, “Lipid classes, fatty acid composition and antimicrobial properties of brown algae Lobophora tsengii D. Tien & Z. Sun collected at Bach Long Vi island”, Vietnam J. Sci. Technol., vol. 63, no. 3, pp. 465–476, Jun. 2025.

Issue

Section

Natural Products

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 

You may also start an advanced similarity search for this article.