Synthesis and properties of g-C₃N₄ bulk and nanosheets derived from thiourea

Luu Thi Lan Anh, Nguyen Quang Truong, Nguyen Thi Tuyet Mai, Nguyen Cong Tu, Le Manh Cuong
Author affiliations

Authors

  • Luu Thi Lan Anh Faculty of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam https://orcid.org/0000-0002-0175-7975
  • Nguyen Quang Truong Faculty of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam
  • Nguyen Thi Tuyet Mai School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam
  • Nguyen Cong Tu Faculty of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam
  • Le Manh Cuong Faculty Building Material, Hanoi University of Civil Engineering, 5 Giai Phong, Hai Ba Trung, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/18821

Keywords:

Graphitic carbon nitride, g-C₃N₄ nanosheet, thiourea precursor, graft polymerization, photocatalytic materials

Abstract

Graphitic carbon nitride (g-C₃N₄) has attracted significant interest due to its stability, low-cost elements, and potential applications in photocatalysis. In this study, g-C₃N₄ bulk was synthesized by thermal polycondensation of thiourea at temperatures ranging from 480 to 550 °C. The influence of calcination temperature on the structural and optical properties of g-C₃N₄ was investigated using XRD, FTIR, SEM, UV-Vis diffuse reflectance, and photoluminescence (PL) analyses. Results showed that g-C₃N₄ synthesized at 520 – 550 °C exhibited high crystallinity with typical (002) and (100) diffraction peaks. FTIR spectra confirmed the presence of triazine units in the structure. Nanosheets of g-C₃N₄ were obtained via thermal oxidation of the bulk in static air, resulting in a porous and expanded morphology. Compared to the bulk, the nanosheets displayed a reduced bandgap energy (from 2.750 eV to 2.625 eV) and blue-shifted PL emission, indicating enhanced separation of photo-induced charge carriers. Lorentz fitting of PL spectra revealed three primary emission centers, related to different transition states. These findings suggest that the synthesized g-C₃N₄ nanosheets possess improved optical properties and could be promising materials for visible-light-driven photocatalytic applications. This work also demonstrates a facile, environmentally friendly route to synthesize g-C₃N₄ materials from thiourea, suitable for scale-up.    

Downloads

Download data is not yet available.

References

1. Sohail M., Anwar U., Taha T. A., Qazi H. I. A., Al-Sehemi A. G., Ullah S., Algarni H., Ahmed I. M., Amin M. A., Palamanit A., et al. - Nanostructured materials based on g-C3N4 for enhanced photocatalytic activity and potentials application: A review, Arab. J. Chem. 15 (2022) 104070. https://doi.org/10.1016/j.arabjc.2022.104070.

2. A. Alaghmandfard., K. Ghandi – A Comprehensive Review of Graphitic Carbon Nitride (g-C3N4)-Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing, Nanomaterials 12 (2022) 12020294. https://doi.org/10.3390/nano12020294.

3. M. Raaja Rajeshwari., S. Kokilavani., S. Sudheer Khan – Recent developments in architecturing the g-C3N4 based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment, Chemosphere 291 (2022) 132735. https://doi.org/10.1016/j.chemosphere.2021.132735.

4. S.M. Abu-Sari., W.M.A.W. Daud., M.F.A. Patah., B.C. Ang – A review on synthesis, modification method, and challenges of light-driven H2 evolution using g-C3N4-based photocatalyst, Adv. Colloid Interface Sci. 307 (2022) 102722. https://doi.org/10.1016/j.cis.2022.102722.

5. J. Wang., S. Wang – A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application, Coord. Chem. Rev. 453 (2022) 214338. https://doi.org/10.1016/j.ccr.2021.214338.

6. M. Inagaki., T. Tsumura., T. Kinumoto., M. Toyoda – Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials, Carbon N. Y. 141 (2019) 580-607. https://doi.org/10.1016/j.carbon.2018.09.082.

7. A. Balakrishnan., M. Chinthala – Comprehensive review on advanced reusability of g-C3N4 based photocatalysts for the removal of organic pollutants, Chemosphere 297 (2022) 134190. https://doi.org/10.1016/j.chemosphere.2022.134190.

8. T. Kashyap., S. Biswas., S. Ahmed., D. Kalita., P. Nath., B. Choudhury – Plasmon activation versus plasmon quenching on the overall photocatalytic performance of Ag/Au bimetal decorated g-C3N4 nanosheets, Appl. Catal. B Environ. 298 (2021) 120614. https://doi.org/10.1016/j.apcatb.2021.120614.

9. B. Babu., J. Shim., A.N. Kadam., K. Yoo – Modification of porous g-C3N4 nanosheets for enhanced photocatalytic activity: In-situ synthesis and optimization of NH4Cl quantity, Catal. Commun. 124 (2019) 123-127. https://doi.org/10.1016/j.catcom.2019.01.009.

10. Y. Dai., Y. Wang., G. Zuo., J. Kong., Y. Guo., C. Sun., Q. Xian – Photocatalytic degradation mechanism of phenanthrene over plasmonic Ag/Ag3PO4/g-C3N4 nanocomposite, Chemosphere 293 (2022) 133575. https://doi.org/10.1016/j.chemosphere.2022.133575.

11. H. Shi., Y. Li., X. Wang., H. Yu., J. Yu – Selective modification of ultra-thin g-C3N4 nanosheets on the (110) facet of Au/BiVO4 for boosting photocatalytic H2O2 production, Appl. Catal. B Environ. 297 (2021) 120414. https://doi.org/10.1016/j.apcatb.2021.120414.

12. M. Heydari., N. Azizi., Z. Mirjafari., M.M. Hashemi – Aluminum anchored on g-C3N4 as robust catalysts for Mannich reaction, J. Mol. Struct. 1259 (2022) 132731. https://doi.org/10.1016/j.molstruc.2022.132731.

13. M. Arif., Q. Li., J. Yao., T. Huang., Y. Hua., T. Liu., X. Liu – Enhance photocatalysis performance and mechanism of CdS and Ag synergistic co-catalyst supported on mesoporous g-C3N4 nanosheets, J. Environ. Chem. Eng. 5 (2017) 5358-5368. https://doi.org/10.1016/j.jece.2017.10.024.

14. S. Rao., Y. Li., H. Liu., S. Gao., J. Zhao., N. Rahman., J. Li, Y. Zhou, D. Wang, L. Zhang, Q. Liu, J. Yang – Polyethyleneimine induced highly dispersed Ag nanoparticles over g-C3N4 nanosheets, Ceram. Int. 47 (2021) 8528-8537. https://doi.org/10.1016/j.ceramint.2020. 11.220.

15. X. Zhang., K. Hu., X. Zhang., W. Ali., Z. Li., Y. Qu., H. Wang., Q. Zhang., L. Jing – Surface co-modification with highly-dispersed Mn & Cu oxides of g-C3N4 nanosheets, Appl. Surf. Sci. 492 (2019) 125-134. https://doi.org/10.1016/j.apsusc.2019.06.189.

16. Y. Yan., X. Zhou., P. Yu., Z. Li., T. Zheng – Characteristics, mechanisms and bacteria behavior of photocatalysis with a solid Z-scheme Ag/AgBr/g-C3N4 nanosheet in water disinfection, Appl. Catal. A Gen. 590 (2020) 117282. https://doi.org/10.1016/j.apcata.2019.117282.

17. X. Zhang., S.P. Jiang., P. Yang – Bright and tunable photoluminescence from the assembly of red g-C3N4 nanosheets, J. Lumin. 235 (2021) 118055. https://doi.org/10.1016/j.jlumin.2021.118055.

18. J. Tong., L. Zhang., F. Li., K. Wang., L. Han., S. Cao – Rapid and high-yield production of g-C3N4 nanosheets via chemical exfoliation for photocatalytic H2 evolution, RSC Adv. 5 (2015) 88149-88153. https://doi.org/10.1039/c5ra16988g.

19. X. Chang., S. Xu., D. Wang., Z. Zhang., Y. Guo., S. Kang – Flash dual-engineering of surface carboxyl defects and single Cu atoms of g-C3N4 via unique CO2 plasma immersion approach, Mater. Today Adv. 15 (2022) 100274. https://doi.org/10.1016/j.mtadv.2022.100274.

20. L. Yang., J. Huang., L. Shi., L. Cao., Q. Yu., Y. Jie., J. Fei., H. Ouyang., J. Ye – A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production, Appl. Catal. B Environ. 204 (2017) 335-345. https://doi.org/10.1016/j.apcatb.2016.11.047.

21. A. Kumar., S. Singh., M. Khanuja – A comparative photocatalytic study of pure and acid-etched template free graphitic C3N4 on different dyes, Mater. Chem. Phys. 243 (2020) 122402. https://doi.org/10.1016/j.matchemphys.2019.122402.

22. J. Zhang., M. Zhang., C. Yang., X. Wang – Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection, Adv. Mater. 26 (2014) 4121-4126. https://doi.org/10.1002/adma.201400573.

23. D. Liu., N. Tong., Z. Zhang., Z. Yang., Y. Wang., F. Li., H. Lin., J. Long., X. Wang – Post-synthetic regulation of the structure, morphology and photoactivity of graphitic carbon nitride, Mater. Des. 114 (2017) 208-213. https://doi.org/10.1016/j.matdes.2016.11.087.

24. A. Sharma., M. Varshney., K.H. Chae., S.O. Won – Mechanistic investigations on emission characteristics from g-C3N4, g-C3N4@Pt and g-C3N4@Ag nanostructures, Curr. Appl. Phys. 18 (2018) 1458-1464. https://doi.org/10.1016/j.cap.2018.08.019.

Downloads

Published

13-06-2025

How to Cite

[1]
L. T. Lan Anh, N. Quang Truong, N. T. Tuyet Mai, N. Cong Tu, and L. Manh Cuong, “Synthesis and properties of g-C₃N₄ bulk and nanosheets derived from thiourea”, Vietnam J. Sci. Technol., vol. 63, no. 5, Jun. 2025.

Issue

Section

Materials

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

You may also start an advanced similarity search for this article.