New coumarin-based mannich bases: synthesis and in vitro cytotoxic evaluation

Tran Duy Thanh, Vu Xuan Thach, Ho Duc Cuong, Dao Phuong Lan, Tran Khac Vu
Author affiliations

Authors

  • Tran Duy Thanh School of Chemistry and Life Sciences, Hanoi University of Science and Technology No 1, Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam
  • Vu Xuan Thach School of Chemistry and Life Sciences, Hanoi University of Science and Technology No 1, Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam
  • Ho Duc Cuong School of Chemistry and Life Sciences, Hanoi University of Science and Technology No 1, Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam
  • Dao Phuong Lan School of Chemistry and Life Sciences, Hanoi University of Science and Technology No 1, Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam
  • Tran Khac Vu School of Chemistry and Life Sciences, Hanoi University of Science and Technology No 1, Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam https://orcid.org/0000-0003-1127-1597

DOI:

https://doi.org/10.15625/2525-2518/19578

Keywords:

Mannich, cytotoxicity, coumarin

Abstract

This paper presents the synthesis of novel Mannich bases 4a-h derived from coumarin in good yields through a three-step procedure. Initially, the Knoevenagel reaction of 2,4-dihydroxybenzaldehyde (1) with Medrum’s acid in water under reflux for 10 hours afforded coumarin acid (2) in 95 % yield. Compound 2 was next reacted with 3-methoxybenzylamine and 4-methoxybenzylamine in DMF using EDC and DMAP as a coupling system for 10-12 hours to give compound 3a-b in 76-83% yield. Finally, the reaction of 3a-b with the excess of paraformadehyde and secondary amines in ethanol under reflux for 20 hours gave new coumarin-based Mannich bases 4a-h with yields ranging from 30% to 69%. The structures of the Mannich bases were characterized using NMR and MS spectra. Bioassay results revealed that some of the synthesized Mannich bases exhibit cytotoxic activity against SKLu-1 and MCF-7 cell lines, ranging from weak to moderate effect.

Downloads

Download data is not yet available.

References

1. Siegel R. L., Miller K. D., Wagle N. S., Jemal A. - Cancer statistics, CA Cancer J. Clin. 73 (2023) 17‐48. doi:10.3322/caac.21763.

2. La Quy Luong and Tran Khac Vu. - Coumarin-Derived Mannich Bases: A Review of Biological Activities, Lett. Org. Chem. 21 (2024) 303-319. doi:10.2174/157017862 0666230622113356.

3. Paya M., Goodwin P. A., Heras B. D. L., Hoult R. S. - Superoxide scavenging activity in leukocytes and absence of cellular toxicity of a series of coumarins, Biochem. Pharmacol. 48 (1994) 445e51. doi.org/10.1016/0006-2952(94)90273-9.

4. Ojala T. - Screening of plant coumarins, PhD thesis, Helsinki: University of Helsinki, 2001, pp. 23e25.

5. Lacy A., O’Kennedy R. - Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer, Current Pharma. Des. 10 (2004) 3797e811. doi.org/10.2174/1381612043382693.

6. Budzisz E., Brzezinska E., Krajewska U., Rozalski M. - Cytotoxic effects, alkylating properties and molecular modelling of coumarin derivatives and their phosphonic analogues, Eur. J. Med. Chem. 38 (2003) 597e603. doi.org/10.1016/S0223-5234(03)00086-2.

7. Singh R., Singh R. K., Mahdi A. A., Misra S., Rai S. P., Singh D., Cornelissen G. - Studies on circadian periodicity of urinary corticoids in carcinoma of the breast, In Vivo 12 (1998) 69e73.

8. Mannich C., Krösche W. - Ueber ein kondensationsprodukt aus formaldehyd, ammoniak und antipyrine , Arch. Pharm. 250 (1912) 647.

9. Kobayashi S., Mori Y., Fossey J. S., Salter M. M. - Catalytic Enantioselective Formation of C−C Bonds by Addition to Imines and Hydrazones: A Ten-Year Update, Chem. Rev. 111 (2011) 2626. doi.org/10.1021/cr100204f.

10. Noble A., Anderson J. C. - Nitro-Mannich Reaction, Chem. Rev. 113 (2013) 2887-2939. doi.org/10.1021/cr300272t.

11. Iijima K., Harada M., Fukuhara G., Okada T. - Frozen Solution-Mediated Asymmetric Synthesis: Control of Enantiomeric Excess, J. Org. Chem. 85 (2020) 4525. doi.org/10.1021/acs.joc.9b03415.

12. Co´rdova A. - The Direct Catalytic Asymmetric Mannich Reaction, Acc. Chem. Res. 37 (2004) 102. doi.org/10.1021/ar030231l.

13. List B. - The Direct Catalytic Asymmetric Three-Component Mannich Reaction, J. Am. Chem. Soc. 122 (2000) 9336. doi.org/10.1021/ja001923x.

14. Overmann L., Ricca D. - Comprehensive Organic Synthesis, Vol. 2, Pergamon Press, Oxford, 1991, pp. 1007.

15. Xu T., Zheng Z., Guo Y., Bai L. P. - Semisynthesis of novel magnolol-based Mannich base derivatives that suppress cancer cells via inducing autophagy, Eur. J. Med. Chem. 205 (2020) 112663. doi.org/10.1016/j.ejmech.2020.112663.

16. Prakash C. R., Raja S. - Synthesis, characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and Mannich base of isatin derivatives, J. Saudi Chem. Soc. 17 (2013) 337. doi.org/10.1016/j.jscs.2011.10.022.

17. Sivakumar K. K., Rajasekaran A., Senthilkumar P., Wattamwar P. P. - Conventional and microwave assisted synthesis of pyrazolone Mannich bases possessing anti-inflammatory, analgesic, ulcerogenic effect and antimicrobial properties, Bioorg. Med. Chem. Lett. 24 (2014) 2940. doi.org/10.1016/j.bmcl.2014.04.067.

18. Bamnela R., Shrivastava S. P. - Synthesis and Characterizaton of Some N-Mannich Bases as Potential Antimicrobial, Anthelmintic and Insecticidal Agent, Chem. Sci. Trans. 1 (2012) 431. doi:10.7598/cst2012.184.

19. Koksal M., Gokhan N., Kupeli E., Yesilada E., Erdogan H. - Analgesic and antiinflammatory activities of some new mannich bases of 5-nitro-2-benzoxazolinones, Arch. Pharm. Res. 30 (2007) 419. doi.org/10.1007/BF02980214.

20. Czopek A., Byrtus H., Zagorska A., Siwek A., Kazek G., Bednarski M., Sapa J., Pawłowski M. - Design, synthesis, anticonvulsant, and antiarrhythmic properties of novel N-Mannich base and amide derivatives of β-tetralinohydantoin, Pharmacol Rep. 68 (2016) 886. doi.org/10.1016/j.pharep.2016.04.018.

21. Racane L., Kulenovic T. V., Fiser-Jakic L. - Synthesis of Bis-substituted Amidinobenzothiazoles as Potential Anti-HIV Agents, Heterocycles 55 (2001) 2085.

22. Kashiyama E., Hutchinson I., Chua M. S., Stinson S. F., Phillips L. R., Kaur G., Sausville E. A., Bradshaw T. D., Westwell A. D., Stevens M. F. - Antitumor Benzothiazoles, Synthesis, Metabolic Formation, and Biological Properties of the C- and N-Oxidation Products of Antitumor 2-(4-Aminophenyl)benzothiazoles, J. Med. Chem. 42 (1999) 4172. doi.org/10.1021/jm990104o.

23. Brahmachari G. - Room Temperature One-Pot Green Synthesis of Coumarin-3-carboxylic Acids in Water: A Practical Method for the Large-Scale Synthesis, ACS Sustainable Chemistry & Engineering 3 (2015) 2350-2358. doi.org/10.1021/acssuschemeng.5b00826.

24. Gao F., Tao D., Ju C., Yang B. B., Bao X, Q., Zhang D., Zhang T. T., Li L. - Regioselectivity of aminomethylation in 3-acetyl-7-hydroxycoumarins: Mannich bases and Betti bases, New Journal of Chemistry 45 (2021) 9864-9871). doi.org/10.1039/D1NJ01584B.

25. Skehan P., Storeng R., Scudiero D., Monks A., McMahon J., Vistica D., Warren J. T., Bokesch H., Kenney S., Boyd M. R. - New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening, J. Natl. Cancer Inst. 82 (1990) 1107. doi.org/10.1093/jnci/82.13.1107.

Downloads

Published

04-06-2025

How to Cite

[1]
D. T. Tran, X. T. Vu, D. C. Ho, P. L. Dao, and T. K. Vu, “New coumarin-based mannich bases: synthesis and in vitro cytotoxic evaluation”, Vietnam J. Sci. Technol., vol. 63, no. 4, pp. 723–733, Jun. 2025.

Issue

Section

Materials

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.