A high-efficiency positive buck–boost converter with three-mode selection circuit and soft start circuit

Van Tuan Nguyen, Manh Kha Hoang, Xuan Thanh Pham
Author affiliations

Authors

  • Van Tuan Nguyen Faculty of Electronics Engineering, Hanoi University of Industry, No. 298 Cau Dien Street, Bac Tu Liem District, Ha Noi, Viet Nam
  • Manh Kha Hoang Faculty of Electronics Engineering, Hanoi University of Industry, No. 298 Cau Dien Street, Bac Tu Liem District, Ha Noi, Viet Nam
  • Xuan Thanh Pham Faculty of Electronics Engineering, Hanoi University of Industry, No. 298 Cau Dien Street, Bac Tu Liem District, Ha Noi, Viet Nam https://orcid.org/0000-0001-9979-3220

DOI:

https://doi.org/10.15625/2525-2518/19639

Keywords:

Three-Mode Selection, DC-DC Converter, Soft Start, Integrated Power Management.

Abstract

Positive Buck-Boost converters are considered the optimal choice for battery-powered applications that require high power conversion efficiency and extend battery life. The converter offers versatility in processing input voltages over a wide range thanks to its three operating modes: Boost, Buck, and Buck-Boost (Bck-Bst) while maximizing battery capacity. The efficiency of the converter can be severely affected by a severe ripple in the output voltage and current when transitioning between modes. To reduce the output instability and output ripple during operation, a three-mode selection circuit that uses a very small delay between mode transitions is proposed to minimize the above effects. The proposed chip was designed and implemented on a CMOS 0.18 µm process. In addition, a high peak efficiency of 95.6% can be achieved under the conditions of a wide input range of 2.5 V - 5 V.

Downloads

Download data is not yet available.

References

Oh J. W., Jo J. W., Kim Y. H., Lee S. J. and Pu Y. G. - A 316.5nA Quiescent Current of DC-DC Converter with 92.8% Peak Efficiency for a IoT Application, 2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN), Paris, France, 2023, pp. 736-739, doi: 10.1109/ICUFN57995.2023.10199436.

2. Chen Y. Y., Chang Y. C. and Wei C. L. - Mixed-Ripple Adaptive On-Time Controlled Non-Inverting Buck-Boost DC-DC Converter With Adaptive-Window-Based Mode Selector, in IEEE Transactions on Circuits and Systems II: Express Briefs 69 (4) (2022) 2196-2200. doi: 10.1109/TCSII.2021.3139100.

3. Bai Y., Zhu Z., Yang Z., Zha S. and Hu S. - Analysis and Comparison of Inductor Current Characteristics for Non-Inverting Buck-Boost Converter With Four-Mode Modulation, 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing, China, 2022, pp. 2534-2540, doi: 10.1109/CIEEC54735.2022.9846753.

4. Ikeda T., Castellazzi A. and Hikihara T. - Modulation Options for a High-Frequency High-Efficiency GaN-Based Non-Inverting Buck-Boost DC-DC Converter, 2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia), Singapore, Singapore, 2021, pp. 2193-2198, doi: 10.1109/ECCE-Asia49820.2021.9479297.

5. Alajmi B. N., Abdelsalam I., Marei M. I. and Ahmed N. A. - Two Stage Single-Phase EV On-Board Charger Based On Interleaved Cascaded Non-Inverting Buck-Boost Converter, 2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE), Luxor, Egypt, 2023, pp. 1-6, doi: 10.1109/CPERE56564.2023.10119584.

6. Wei A., Lehman B., Bowhers W. and Amirabadi M. - A Soft-Switching Non-Inverting Buck-Boost Converter, 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 2021, pp. 1920-1926, doi:10.1109/APEC42165.2021. 9487051.

7. Xu C. and Liu L. - A Four Modes and Smooth Transition Non-Inverting Buck-Boost Converter, 2021 IEEE 14th International Conference on ASIC (ASICON), Kunming, China, 2021, pp. 1-4, doi: 10.1109/ASICON52560.2021.9620338.

8. Alajmi B. N., Marei M. I., Abdelsalam I. and Ahmed N. A. - Multiphase Interleaved Converter Based on Cascaded Non-Inverting Buck-Boost Converter, in IEEE Access 10 (2022) 42497-42506, doi: 10.1109/ACCESS.2022.3168389.

9. Wu H., Mu T., Ge H. and Xing Y. - Full-Range Soft-Switching-Isolated Buck-Boost Converters With Integrated Interleaved Boost Converter and Phase-Shifted Control, in IEEE Transactions on Power Electronics 31 (2) (2016) 987-999. doi:10.1109/TPEL. 2015.2425956.

10. Calderon-Lopez G., Forsyth A. and Wu D. - Discontinuous Conduction/Current Mode Analysis of Dual Interleaved Buck and Boost Converters With Interphase Transformer, in IET Power Electronics 9 (2016), doi: 10.1049/iet-pel.2014.0924.

11. Li W., Xiao J., Zhao Y. and He X. - PWM Plus Phase Angle Shift (PPAS) Control Scheme for Combined Multiport DC/DC Converters, in IEEE Transactions on Power Electronics 27 (3) (2012) 1479-1489, doi: 10.1109/TPEL.2011.2163826.

12. Hong S. W., Park S. H., Kong T. H., and Cho G. H. - Inverting Buck-Boost DC-DC Converter for Mobile AMOLED Display Using Real-Time Self-Tuned Minimum Power-Loss Tracking (MPLT) Scheme With Lossless Soft-Switching for Discontinuous Conduction Mode, in IEEE Journal of Solid-State Circuits 50 (10) (2015) 2380-2393, doi:10.1109/JSSC.2015.2450713.

13. Keramida E., Souliotis G., Vlassis S. and Plessas F. - Buck-Boost Charge Pump Based DC-DC Converter, Journal of Low Power Electronics and Applications 13 (2) (2023): 27, doi: 10.3390/jlpea13020027.

14. Wu K. C., Wu H. H., and Wei C. L. - Analysis and Design of Mixed-Mode Operation for Noninverting Buck–Boost DC–DC Converters, in IEEE Transactions on Circuits and Systems II: Express Briefs 62 (12) (2015) 1194-1198, doi: 10.1109/TCSII.2015.2469032.

15. Tsai Y. Y., Tsai Y. S., Tsai C. W., and Tsai C. H. - Digital Noninverting-Buck–Boost Converter With Enhanced Duty-Cycle-Overlap Control, in IEEE Transactions on Circuits and Systems II: Express Briefs 64 (1) (2017) 41-45, doi: 10.1109/TCSII.2016.2546881.

16. Thi Kim Nga T., Park S. M., Park Y. J., Park S. H., Kim S., Van Cong Thuong T., Lee M., Hwang K. C., Yang Y., and Lee K. Y. - A Wide Input Range Buck-Boost DC–DC Converter Using Hysteresis Triple-Mode Control Technique with Peak Efficiency of 94.8% for RF Energy Harvesting Applications, Energies 11 (7) (2018) 1618.

17. Chen J. J., Shen P. N., and Hwang Y. S. - A High-Efficiency Positive Buck–Boost Converter With Mode-Select Circuit and Feed-Forward Techniques, in IEEE Transactions on Power Electronics 28 (9) (2013) 4240-4247, doi: 10.1109/TPEL.2012.2223718.

18. Liu P. J., Hsu Y. C., and Chang Y. H. - A Current-Mode Buck Converter With a Pulse-Skipping Soft-Start Circuit, 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), Kitakyushu, Japan, 2013, pp. 262-265, doi:10.1109/PEDS.2013.6527025.

19. Jiang J., Huang F., and Xiong Z. - Adaptive Switching Frequency Buck DC-DC Converter With High-Accuracy On-Chip Current Sensor, Journal of Semiconductors 36 (5) (2015) doi: 10.1088/1674-4926/36/5/055005.

20. Yuan B., Lai X. Q., Wang H. Y., and Ye Q. - Pseudo-Type-III Compensation Integrated in a Voltage-Mode Buck Regulator, in IEEE Transactions on Circuits and Systems II: Express Briefs 61 (12) (2014) 997-1001, doi: 10.1109/TCSII.2014.2356915.

21. Wu P. Y., Tsui S. Y. S. and Mok P. K. T. - Area- and Power-Efficient Monolithic Buck Converters With Pseudo-Type III Compensation, in IEEE Journal of Solid-State Circuits 45 (8) (2010) 1446-1455, doi: 10.1109/JSSC.2010.2047451.

22. Barati M. and Yavari M. - A Power Conversion Chain by Coil Inductor Sharing in Voltage Converter Structure for Wireless Bio-Implants, 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2017, pp. 431-434, doi:10.1109/ IranianCEE.2017.7985488.

Downloads

Published

28-08-2025

How to Cite

[1]
Van Tuan Nguyen, Manh Kha Hoang, and X. T. Pham, “A high-efficiency positive buck–boost converter with three-mode selection circuit and soft start circuit”, Vietnam J. Sci. Technol., vol. 63, no. 4, pp. 792–805, Aug. 2025.

Issue

Section

Electronics - Telecommunication

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.