Bio-based nanomaterials and their biomedical applications: a short review
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/19824Keywords:
hybrid nanomaterials, medical application, nanocellulose, biosensors, carbon quantum dotsAbstract
Recent advancements in biomedical technologies have led to the exploration of bio-based nanomaterials, which offer exceptional properties such as high surface area, biocompatibility, and environmental friendliness. Additionally, the bio-based nanomaterials are widely available and provide a sustainable architecture for various applications. This review highlights three distinct nanomaterials synthesized from and/or with bio-sources: nanocellulose, silver nanoparticles, and carbon dots/carbon quantum dots, representing natural polymers, metallic nanoparticles, and organic nanoparticles, respectively. This review discusses their synthesis methods and their potential applications in tissue engineering, wound healing, and biosensing. The review also includes an outlook on the utilization and challenges of these nanomaterials in biomedical applications.Downloads
References
Abdullaeva Z. - Nano-and biomaterials: compounds, properties, characterization, and applications, John Wiley & Sons, 2017.
Dolez P. I. - Nanomaterials Definitions, Classifications, and Applications, In Nanoengineering: Global Approaches to Health and Safety Issues, Elsevier, 2015, pp. 3-40. https://doi.org/10.1016/B978-0-444-62747-6.00001-4
Malhotra B. D. and Ali M. A. - Nanomaterials in Biosensors. In Nanomaterials for Biosensors, Elsevier, 2018, pp. 1-74. https://doi.org/10.1016/b978-0-323-44923-6.00001-7
Nikzamir M., Akbarzadeh A., and Panahi Y. - An overview on nanoparticles used in biomedicine and their cytotoxicity, J. Drug Deliv. Sci. Tec. 61 (2021) 102316. https://doi.org/10.1016/j.jddst.2020.102316
Hoang T. D., Bandh S. A., Malla F. A., Qayoom I., Bashir S., Peer S. B., and Halog A. - Carbon-Based Synthesized Materials for CO2 Adsorption and Conversion: Its Potential for Carbon Recycling, Recycling 8 (4) (2023) (2023) 1-18. https://doi.org/10.3390/ recycling8040053
Sezali N. A. A., Ong H. L., Villagracia A. R., and Hoang T. D. - Bio-based nanomaterials for energy application: A review, Vietnam Journal of Chemistry 62 (1) (2024) 1-12. https://doi.org/10.1002/vjch.202300158
Ferreira F. V., Otoni C. G., De France K. J., Barud H. S., Lona L. M. F., Cranston E. D., and Rojas O. J. - Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering, Mater. Today 37 (2020) 126-141. https://doi.org/10.1016/J.MATTOD.2020.03.003
Lasrado D., Ahankari S., and Kar K. - Nanocellulose-based polymer composites for energy applications - A review, J. Appl. Polym. Sci. 137 (27) (2020) 1-14. https://doi.org/ 10.1002/app.48959
Nuruddin M., Hosur M., Uddin M. J., Baah D., and Jeelani S. - A novel approach for extracting cellulose nanofibers from lignocellulosic biomass by ball milling combined with chemical treatment, J. Appl. Polym. Sci. 133 (9) (2016) 42990. https://doi.org/ 10.1002/app.42990
Rajinipriya M., Nagalakshmaiah M., Robert M., and Elkoun S. - Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review, ACS Sustain. Chem. Eng. 6 (3) (2018) 2807-2828. https://doi.org/10.1021/acssuschemeng.7b03437
Isogai A., Saito T., and Fukuzumi H. - TEMPO-oxidized cellulose nanofibers, Nanoscale 3 (1) (2011) 71-85. https://doi.org/10.1039/c0nr00583e
Benhamou K., Dufresne A., Magnin A., Mortha G., and Kaddami H. - Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time, Carbohyd. Polym. 99 (2014) 74-83. https://doi.org/10.1016/ j.carbpol.2013.08.032
Kanai N., Honda T., Yoshihara N., Oyama T., Naito A., Ueda K., and Kawamura I. - Structural characterization of cellulose nanofibers isolated from spent coffee grounds and their composite films with poly(vinyl alcohol): a new non-wood source, Cellulose 27 (9) (2020) 5017-5028. https://doi.org/10.1007/s10570-020-03113-w
Sofla M. R. K., Brown R. J., Tsuzuki T., and Rainey T. J. - A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods, Adv. Nat. Sci-Nanosci. 7 (3) (2016) 35004. https://doi.org/10.1088/2043-6262/7/3/035004
Saelee K., Yingkamhaeng N., Nimchua T., and Sukyai P. - An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization, Ind. Crop. Prod. 82 (2016) 149-160. https://doi.org/ 10.1016/j.indcrop.2015.11.064
Cheng, Z., Li, J., Wang, B., Zeng, J., Xu, J., Zhu, S., Duan, C., & Chen, K. Comparative study on properties of nanocellulose derived from sustainable biomass resources. Cellulose 29(13) (2022) 7083–7098. https://doi.org/10.1007/s10570-022-04717-0
Hu H., Catchmark J. M., and Demirci A. - Co-culture fermentation on the production of bacterial cellulose nanocomposite produced by Komagataeibacter hansenii, Carbohyd. Polym. Tech. 2 (2021) 100028. https://doi.org/10.1016/j.carpta.2020.100028
Güzel M. and Akpınar Ö. - Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016, Int. J. Biol. Macromol. 162 (2020) 1597-1604. https://doi.org/10.1016/j.ijbiomac.2020.08.049
Volova T. G., Prudnikova S. V., Sukovatyi A. G., and Shishatskaya E. I. - Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068, Appl. Microbiol. Biot. 102 (17) (2018) 7417-7428. https://doi.org/10.1007/s00253-018-9198-8
Barshan S., Rezazadeh-Bari M., Almasi H., and Amiri S. - Optimization and characterization of bacterial cellulose produced by Komagatacibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium, Int. J. Biol. Macromol. 136 (2019) 1188-1195. https://doi.org/10.1016/j.ijbiomac.2019.06.192
Beck F., Loessl M., and Baeumner A. J. - Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care, Microchim. Acta 190 (3) (2023). https://doi.org/10.1007/s00604-023-05666-6
Naganthran A., Verasoundarapandian G., Khalid F. E., Masarudin M. J., Zulkharnain A., Nawawi N. M., Karim M., C. Abdullah C. A., and Ahmad S. A. - Synthesis, Characterization and Biomedical Application of Silver Nanoparticles, Materials 15 (2) (2022) 1-43. https://doi.org/10.3390/ma15020427
Vanlalveni C., Lallianrawna S., Biswas A., Selvaraj M., Changmai B., and Rokhum S. L. - Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature, RSC Adv. 11(5) (2021) 2804-2837. https://doi.org/10.1039/D0RA09941D
Hemlata Meena P. R., Singh A. P., and Tejavath K. K. - Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity against Cancer Cell Lines, ACS Omega 5 (10) (2020) 5520-5528. https://doi.org/10.1021/acsomega.0c00155
Chakravarty A., Ahmad I., Singh P., Ud Din Sheikh M., Aalam G., Sagadevan S., and Ikram S. - Green synthesis of silver nanoparticles using fruits extracts of Syzygium cumini and their bioactivity, Chem. Phys. Lett. 795 (2022) 139493. https://doi.org/ 10.1016/j.cplett.2022.139493
Katta V. K. M., and Dubey R. S. - Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties, Mater. Today-Proc. 45 (2021) 794-798. https://doi.org/10.1016/ j.matpr.2020.02.809
Zamarchi F. and Vieira I. C. - Determination of paracetamol using a sensor based on green synthesis of silver nanoparticles in plant extract, J. Pharmaceut. Biomed. 196 (2021) 113912. https://doi.org/10.1016/j.jpba.2021.113912
Rodríguez-Acosta H., Tapia-Rivera J. M., Guerrero-Guzmán A., Hernández-Elizarraráz E., Hernández-Díaz J. A., Garza-García J. J. O., Pérez-Ramírez P. E., Velasco-Ramírez S. F., Ramírez-Anguiano A. C., Velázquez-Juárez G., Velázquez-López J. M., Sánchez-Toscano Y. G., García-Morales S., Flores-Fonseca M. M., García-Bustos D. E., Sánchez-Chiprés D. R., and Zamudio-Ojeda A. - Chronic wound healing by controlled release of chitosan hydrogels loaded with silver nanoparticles and calendula extract, J. Tissue Viability 31 (1) (2022) 173-179. https://doi.org/10.1016/j.jtv.2021.10.004
Gupta I., Kumar A., Bhatt A. N., Sapra S., and Gandhi S. - Green Synthesis-Mediated Silver Nanoparticles Based Biocomposite Films for Wound Healing Application, J. Inorg. Organomet P 32 (8) (2022) 2994-3011. https://doi.org/10.1007/s10904-022-02333-w
Asefian S. and Ghavam M. - Green and environmentally friendly synthesis of silver nanoparticles with antibacterial properties from some medicinal plants, BMC Biotechnol. 24 (1) (2024) 5. https://doi.org/10.1186/s12896-023-00828-z
Panja A., Mishra A. K., Dash M., Pandey N. K., Singh S. K., and Kumar B. - Silver nanoparticles – a review, Eur. J. Med. Oncol. 5 (2) (2021) 95-102. https://doi.org/ 10.14744/ejmo.2021.59602
Maghimaa M., and Alharbi S. A. - Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity, J. Photoch. Photobio B 204 (2020) 111806. https://doi.org/10.1016/ j.jphotobiol.2020.111806
Rathore H. S., Sivagnanam U. T., Abraham L. S., Prakash D., Panda R. C., and Senthilvelan T. - Green synthesized silver nanoparticles-impregnated novel gum kondagogu–chitosan biosheet for tissue engineering and wound healing applications, Polymer Bulletin 79 (9) (2022) 7215-7227. https://doi.org/10.1007/s00289-021-03832-5
Kasinathan K., Samayanan S., Marimuthu K., and Yim J. H. - Green synthesis of multicolour fluorescence carbon quantum dots from sugarcane waste: Investigation of mercury (II) ion sensing, and bio-imaging applications, Appl. Surf. Sci. 601 (2022) 154266. https://doi.org/10.1016/j.apsusc.2022.154266
Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., and Scrivens W. A. - Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc. 126 (40) (2004) 12736-12737. https://doi.org/10.1021/ ja040082h
Sun Y. P., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H., Luo P. G., Yang H., Kose M. E., Chen B., Veca L. M., and Xie S. Y. - Quantum-sized carbon dots for bright and colorful photoluminescence, J. Am. Chem. Soc. 128 (24) (2006) 7756-7757. https://doi.org/10.1021/ja062677d
Pourmadadi M., Rahmani E., Rajabzadeh-Khosroshahi M., Samadi A., Behzadmehr R., Rahdar A., and Ferreira L. F. R. - Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review, J. Drug Deliv. Sci. Tec. 80 (2023) 104156. https://doi.org/10.1016/j.jddst.2023.104156
Barrientos K., Arango J. P., Moncada M. S., Placido J., Patiño J., Macías S. L., S. L., Maldonado C., Torijano S., Bustamante S., Londoño M. E., and Jaramillo M. - Carbon dot-based biosensors for the detection of communicable and non -communicable diseases. Talanta 251 (2023) 123791. https://doi.org/10.1016/J.TALANTA.2022.123791
Ornelas-Hernández L. F., Garduno-Robles A., and Zepeda-Moreno A. - A Brief Review of Carbon Dots–Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications, Nanoscale Res. Lett. 17 (1) (2022) 1-23. https://doi.org/ 10.1186/s11671-022-03691-7
Zhao X., Liao S., Wang L., Liu Q., and Chen X. - Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion, Talanta 201 (2019) 1-8. https://doi.org/10.1016/j.talanta.2019.03.095
Singh H., Bamrah A., Khatri M., and Bhardwaj N. - One-pot hydrothermal synthesis and characterization of carbon quantum dots (CQDs), Mater. Today-Proc. 28 (2020) 1891-1894. https://doi.org/10.1016/j.matpr.2020.05.297
Arumugham T., Alagumuthu M., Amimodu R. G., Munusamy S., and Iyer S. K. - A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications, Sus. Mater. Tech. 23 (2020) e00138. https://doi.org/10.1016/j.susmat.2019.e00138
Jagannathan M., Dhinasekaran D., Soundharraj P., Rajendran S., Vo D. V. N., Prakasarao A., and Ganesan S. - Green synthesis of white light emitting carbon quantum dots: Fabrication of white fluorescent film and optical sensor applications, J. Hazard. Mater. 416(October 2020) (2021) 125091. https://doi.org/10.1016/j.jhazmat.2021.125091
Khan Z. M. S. H., Rahman R. S., Shumaila Islam S., and Zulfequar M. - Hydrothermal treatment of red lentils for the synthesis of fluorescent carbon quantum dots and its application for sensing Fe3+, Opt. Mater. 91 (2019) 386-395. https://doi.org/10.1016/ j.optmat.2019.03.054
Atchudan R., Edison T. N. J. I., Perumal S., Clament Sagaya Selvam N., and Lee Y. R. - Green synthesized multiple fluorescent nitrogen-doped carbon quantum dots as an efficient label-free optical nanoprobe for in vivo live-cell imaging, J. Photoch. Photobio. A. 372 (2019) 99-107. https://doi.org/10.1016/j.jphotochem.2018.12.011
Atchudan R., Jebakumar Immanuel Edison T. N., Shanmugam M., Perumal S., Somanathan T., and Lee Y. R. - Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging, Physica E. 126 (2021) 114417. https://doi.org/10.1016/j.physe.2020.114417
Chaudhary N., Gupta P. K., Eremin S., and Solanki P. R. - One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions, J. Environ. Chem. Eng. 8 (3) (2020) 103720. https://doi.org/ 10.1016/j.jece.2020.103720
Marouzi S., Darroudi M., Hekmat A., Sadri K., and Kazemi Oskuee R. - One-pot hydrothermal synthesis of carbon quantum dots from Salvia hispanica L. seeds and investigation of their biodistribution, and cytotoxicity effects, J. Environ. Chem. Eng. 9 (4) (2021) 105461. https://doi.org/10.1016/j.jece.2021.105461
Zhang Y., Li P., Yan H., Guo Q., Xu Q., and Su W. - Green synthesis and multifunctional applications of nitrogen-doped carbon quantum dots via one-step hydrothermal carbonization of Curcuma zedoaria, Anal. Bioanal. Chem. 415 (10) (2023) 1917-1931. https://doi.org/10.1007/s00216-023-04603-z
Zhang Q., Zhang X., Bao L., Wu Y., Jiang L., Zheng Y., Wang Y., and Chen Y. - The application of green-synthesis-derived carbon quantum dots to bioimaging and the analysis of mercury(II), J. Anal. Methods Chem. 2019 (II) (2019). https://doi.org/ 10.1155/2019/8183134
Hoan B. T., Tam P. D., and Pham V. H. - Green Synthesis of Highly Luminescent Carbon Quantum Dots from Lemon Juice, J. Nanotech. 2019 (2019). https://doi.org/10.1155/ 2019/2852816
Malavika J. P., Shobana C., Sundarraj S., Ganeshbabu M., Kumar P., and Selvan R. K. - Green synthesis of multifunctional carbon quantum dots: An approach in cancer theranostics. Biomater, Adv. 136 (2022) 212756. https://doi.org/10.1016/j.bioadv. 2022.212756
Manikandan V. and Lee N. Y. - Green synthesis of carbon quantum dots and their environmental applications, Environ. Res. 212 (2022) 113283. https://doi.org/10.1016/ j.envres.2022.113283
Terzopoulou Z., Zamboulis A., Koumentakou I., Michailidou G., Noordam M. J., and Bikiaris D. N. - Biocompatible Synthetic Polymers for Tissue Engineering Purposes, Biomacromolecules 23 (2022) 1841-1863. https://doi.org/10.1021/acs.biomac.2c00047
Bonnans C., Chou J., and Werb Z. - Remodelling the extracellular matrix in development and disease, Nat. Rev. Mol. Cell Bio. 15 (12) (2014) 786-801. https://doi.org/10.1038/ nrm3904
Pfisterer K., Shaw L. E., Symmank D., and Weninger W. - The Extracellular Matrix in Skin Inflammation and Infection, Front. Cell Dev. Bio. 9 (2021) 1578. https://doi.org/ 10.3389/fcell.2021.682414
Habibzadeh F., Sadraei S. M., Mansoori R., Singh Chauhan N. P., and Sargazi G. - Nanomaterials supported by polymers for tissue engineering applications: A review, Heliyon 8 (12) (2022) e12193. https://doi.org/10.1016/j.heliyon.2022.e12193
Hasanzadeh R., Azdast T., Mojaver M., Darvishi M. M., and Park C. B. - Cost-effective and reproducible technologies for fabrication of tissue engineered scaffolds: The state-of-the-art and future perspectives, Polymer 244 (2022) 124681. https://doi.org/10.1016/ j.polymer.2022.124681
Chan B. P. and Leong K. W. - Scaffolding in tissue engineering: General approaches and tissue-specific considerations, Eur. Spine J. 17 (4) (2008) 467-479. https://doi.org/ 10.1007/s00586-008-0745-3
Zhang Z., Feng Y., Wang L., Liu D., Qin C., and Shi Y. - A review of preparation methods of porous skin tissue engineering scaffolds, Mater. Today Comm. 32 (2022) 104109. https://doi.org/10.1016/J.MTCOMM.2022.104109
Amaral H. R., Wilson J. A., do Amaral R. J. F. C., Pasçu I., de Oliveira F. C. S., Kearney C. J., Freitas J. C. C., and Heise A. - Synthesis of bilayer films from regenerated cellulose nanofibers and poly(globalide) for skin tissue engineering applications, Carbohyd. Polym. 252 (2021) 117201. https://doi.org/10.1016/j.carbpol.2020.117201
Abouzeid R. E., Khiari R., Beneventi D., and Dufresne A. - Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering, Biomacromolecules 19 (11) (2018) 4442–4452. https://doi.org/ 10.1021/acs.biomac.8b01325
Mohammadalipour M., Karbasi S., Behzad T., Mohammadalipour Z., and Zamani M. - Effect of cellulose nanofibers on polyhydroxybutyrate electrospun scaffold for bone tissue engineering applications, Int. J. Biol. Macromol. 220 (2022) 1402-1414. https://doi.org/ 10.1016/j.ijbiomac.2022.09.118
Shaheen T. I., Montaser A. S., and Li S. - Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering, Int. J. Biol. Macromol. 121 (2019) 814-821. https://doi.org/10.1016/j.ijbiomac.2018.10.081
Patel D. K., Dutta S. D., Hexiu J., Ganguly K., and Lim K. T. - Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering, Int. J. Biol. Macromol. 162 (2020) 1429-1441. https://doi.org/10.1016/ j.ijbiomac.2020.07.246
Chen L., Wang Q., Hirth K., Baez C., Agarwal U. P., and Zhu J. Y. - Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis Cellulose 22 (3) (2015) 1753-1762. https://doi.org/10.1007/s10570-015-0615-1
Ghorbani M., Roshangar L., and Soleimani Rad J. - Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering, Eur. Polym. J. 130 (2020) 109697. https://doi.org/ 10.1016/j.eurpolymj.2020.109697
Hasan A., Waibhaw G., Saxena V., and Pandey L. M. - Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications, Int. J. Biol. Macromol. 111 (2018) 923-934. https://doi.org/10.1016/j.ijbiomac.2018.01.089
Geng B., Li P., Fang F., Shi W., Glowacki J., Pan D., and Shen L. - Antibacterial and osteogenic carbon quantum dots for regeneration of bone defects infected with multidrug-resistant bacteria, Carbon 184 (2021) 375-385. https://doi.org/10.1016/j.carbon. 2021.08.040
Han G. and Ceilley R. - Chronic Wound Healing: A Review of Current Management and Treatments, Adv. Ther. 34 (3) (2017) 599-610. https://doi.org/10.1007/s12325-017-0478-y
Biswas M. C., Jony B., Nandy P. K., Chowdhury R. A., Halder S., Kumar D., Ramakrishna S., Hassan M., Ahsan M. A., Hoque M. E., and Imam M. A. - Recent Advancement of Biopolymers and Their Potential Biomedical Applications, J. Polym. Environ 30 (1) (2022) 51-74. https://doi.org/10.1007/s10924-021-02199-y
Kirsner R. S. and Eaglstein W. H. - The wound healing process, Dermatol. Clin. 11 (4) (1993) 629-640. https://doi.org/10.1016/s0733-8635(18)30216-x
Menke N. B., Ward K. R., Witten T. M., Bonchev D. G., and Diegelmann R. F. - Impaired wound healing, Clin. Dermatol. 25(1) (2007) 19-25. https://doi.org/10.1016/ j.clindermatol.2006.12.005
Lazarus G. S., Cooper D. M., Knighton D. R., Margolis D. J., Percoraro R. E., Rodeheaver G., and Robson M. C. - Definitions and guidelines for assessment of wounds and evaluation of healing, Wound Repair Regen. 2(3) (1994) 165-170. https://doi.org/ 10.1046/j.1524-475X.1994.20305.x
Shefa A. A., Amirian J., Kang H. J., Bae S. H., Jung H. Il, Choi H. Jun, Lee S. Y., and Lee B. T. - In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose nanofiber-silk fibroin scaffold in wound healing, Carbohyd. Polym. 177 (2017) 284-296. https://doi.org/10.1016/j.carbpol.2017.08.130
Yu R., Zhang H., and Guo B. - Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering, Nano-Micro Lett. 14 (2022) 1-46. https://doi.org/10.1007/s40820-021-00751-y
Qin P., Tang J., Sun D., Yang Y., Liu N., Li Y., Fu Z., Wang Y., Li C., Li X., Zhang Y., Liu Y., Wang S., Sun J., Deng Z., He L., Wang Y., and Yang X. - Zn2+Cross-Linked Alginate Carrying Hollow Silica Nanoparticles Loaded with RL-QN15 Peptides Provides Promising Treatment for Chronic Skin Wounds, ACS Appl. Mater. Inter. 14 (26) (2022) 29491-29505. https://doi.org/10.1021/acsami.2c03583
Jose J., Pai A. R., Gopakumar D. A., Dalvi Y., Rubi V., Bhat S. G., Pasquini D., Kalarikkal N., and Thomas S. - Novel 3D porous aerogels engineered at nano scale from cellulose nano fibers and curcumin: An effective treatment for chronic wounds, Carbohyd. Polym. 287 (2022) 119338. https://doi.org/10.1016/j.carbpol.2022.119338
Koehler J., Brandl F. P., and Goepferich A. M. - Hydrogel wound dressings for bioactive treatment of acute and chronic wounds, Eur. Polym. J. 100 (2018) 1-11. https://doi.org/ 10.1016/j.eurpolymj.2017.12.046
Jiji S., Udhayakumar S., Maharajan K., Rose C., Muralidharan C., and Kadirvelu K. - Bacterial cellulose matrix with in situ impregnation of silver nanoparticles via catecholic redox chemistry for third degree burn wound healing, Carbohyd. Polym. 245 (2020) 116573. https://doi.org/10.1016/j.carbpol.2020.116573
Ahmed J., Gultekinoglu M., and Edirisinghe M. - Bacterial cellulose micro-nano fibres for wound healing applications, Biotechnol. Adv. 41 (2020) 107549. https://doi.org/10.1016/ j.biotechadv.2020.107549
Jankau J., Błażyńska‐Spychalska A., Kubiak K., Jędrzejczak-Krzepkowska M., Pankiewicz T., Ludwicka K., Dettlaff A., and Pęksa R. - Bacterial Cellulose Properties Fulfilling Requirements for a Biomaterial of Choice in Reconstructive Surgery and Wound Healing, Front. Bioeng. Biotech. 9 (2022) 1492. https://doi.org/10.3389/ fbioe.2021.805053
Deng L., Wang B., Li W., Han Z., Chen S., and Wang H. - Bacterial cellulose reinforced chitosan-based hydrogel with highly efficient self-healing and enhanced antibacterial activity for wound healing, Int. J. Biol. Macromol. 217 (2022) 77-87. https://doi.org/ 10.1016/j.ijbiomac.2022.07.017
Mao L., Wang L., Zhang M., Ullah M. W., Liu L., Zhao W., Li Y., Q. Ahmed A. A., Cheng H., Shi Z., and Yang G. - In Situ Synthesized Selenium Nanoparticles-Decorated Bacterial Cellulose/Gelatin Hydrogel with Enhanced Antibacterial, Antioxidant, and Anti-Inflammatory Capabilities for Facilitating Skin Wound Healing, Adv. Healthc. Mater. 10(14) (2021) 2100402. https://doi.org/10.1002/adhm.202100402
Zmejkoski D. Z., Marković Z. M., Mitić D. D., Zdravković N. M., Kozyrovska N. O., Bugárová N., and Todorović Marković B. M. - Antibacterial composite hydrogels of graphene quantum dots and bacterial cellulose accelerate wound healing, J. Biomed. Mater. Res. B. 110 (8) (2022) 1796-1805. https://doi.org/10.1002/jbm.b.35037
Cui F., Sun J., Ji J., Yang X., Wei K., Xu H., Gu Q., Zhang Y., and Sun X. - Carbon dots-releasing hydrogels with antibacterial activity, high biocompatibility, and fluorescence performance as candidate materials for wound healing, J. Hazard. Mater. 406 (2021) 124330. https://doi.org/10.1016/j.jhazmat.2020.124330
Huang B., Liu X., Li Z., Zheng Y., Wai Kwok Yeung K., Cui Z., Liang Y., Zhu S., and Wu S. - Rapid bacteria capturing and killing by AgNPs/N-CD@ZnO hybrids strengthened photo-responsive xerogel for rapid healing of bacteria-infected wounds, Chem. Eng. J. 414 (2021) 128805. https://doi.org/10.1016/j.cej.2021.128805
Alharbi N. S., Alsubhi N. S., and Felimban A. I. - Green synthesis of silver nanoparticles using medicinal plants: Characterization and application, J. Radiat. Res. Appl. Sci. 15 (3) (2022) 109-124. https://doi.org/10.1016/j.jrras.2022.06.012
Thvenot D. R., Toth K., Durst R. A., and Wilson G. S. - Electrochemical biosensors: Recommended definitions and classification (Technical Report), Pure Appl. Chem. 71 (12) (1999) 2333-2348. https://doi.org/10.1351/pac199971122333
Allouzi M. M. A., Allouzi S., Al-Salaheen B., Khoo K. S., Rajendran S., Sankaran R., Sy-Toan N., and Show P. L. - Current advances and future trend of nanotechnology as microalgae-based biosensor, Biochem. Eng. J. 187 (2022) 108653. https://doi.org/ 10.1016/j.bej.2022.108653
Tharani S., Durgalakshmi D., Balakumar S., and Rakkesh R. A. - Futuristic Advancements in Biomass-Derived Graphene Nanoassemblies: Versatile Biosensors for Point-of-Care Devices, ChemistrySelect 7 (40) (2022) e202203603. https://doi.org/ 10.1002/slct.202203603
Purohit B., Vernekar P. R., Shetti N. P., and Chandra P. - Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis, Sensor. Int. 1 (2020) 100040. https://doi.org/10.1016/J.SINTL.2020.100040
Chadha U., Bhardwaj P., Agarwal R. R., Rawat P., Agarwal R. R., Gupta I., Panjwani M., Singh S., Ahuja C., Selvaraj S. K., Banavoth M., Sonar P., Badoni B., and Chakravorty A. - Recent progress and growth in biosensors technology: A critical review, J. Ind. Eng. Chem. 109 (2022) 21-51. https://doi.org/10.1016/j.jiec.2022.02.010
Sumitha M. S. and Xavier T. S. - Recent advances in electrochemical biosensors – A brief review, Hybrid Adv. 2 (2023) 100023. https://doi.org/10.1016/j.hybadv.2023.100023
Kumar S., Ngasainao M. R., Sharma D., Sengar M., Gahlot A. P. S., Shukla S., and Kumari P. - Contemporary nanocellulose-composites: A new paradigm for sensing applications, Carbohyd. Polym. 298 (2022) 120052. https://doi.org/10.1016/j.carbpol. 2022.120052
Pan Y., Qin Z., Kheiri S., Ying B., Pan P., Peng R., and Liu X. - Optical Printing of Conductive Silver on Ultrasmooth Nanocellulose Paper for Flexible Electronics, Adv. Eng. Mater. 24 (7) (2022) 1-9. https://doi.org/10.1002/adem.202101598
Neubauerova K., Carneiro M. C. C. G., Rodrigues L. R., Moreira F. T. C., and Sales M. G. F. - Nanocellulose- based biosensor for colorimetric detection of glucose, Sensing and Bio-Sensing Research 29 (2020) 100368. https://doi.org/10.1016/j.sbsr.2020.100368
Bandi R., Alle M., Park C. W., Han S. Y., Kwon G. J., Kim N. H., Kim J. C., and Lee S. H. - Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose, Sensor. Actuat. B-Chem. 330 (2021) 129330. https://doi.org/10.1016/j.snb.2020.129330
Bondancia T. J., Soares A. C., Popolin-Neto M., Gomes N. O., Raymundo-Pereira P. A., Barud H. S., Machado S. A. S., Ribeiro S. J. L., Melendez M. E., Carvalho A. L., Reis R. M., Paulovich F. V., and Oliveira O. N. - Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker, Biomater. Adv. 134 (2022) 112676. https://doi.org/10.1016/j.msec.2022.112676
El barghouti M., Akjouj A., and Mir A. - Design of silver nanoparticles with graphene coatings layers used for LSPR biosensor applications, Vacuum 180 (2020) 109497. https://doi.org/10.1016/j.vacuum.2020.109497
Nishan U., Niaz A., Muhammad N., Asad M., Shah A. ul H. A., Khan N., Khan M., Shujah S., and Rahim A. - Non-enzymatic colorimetric biosensor for hydrogen peroxide using lignin-based silver nanoparticles tuned with ionic liquid as a peroxidase mimic, Arab. J. Chem. 14 (6) (2021) 103164. https://doi.org/10.1016/j.arabjc.2021.103164
Hou L., Huang Y., Hou W., Yan Y., Liu J., and Xia N. - Modification-free amperometric biosensor for the detection of wild-type p53 protein based on the in situ formation of silver nanoparticle networks for signal amplification, Int. J. Biol. Macromol. 158 (2020) 580-586. https://doi.org/10.1016/j.ijbiomac.2020.04.271
Zhang Y., Ding L., Zhang H., Wang P., and Li H. - A new optical fiber biosensor for acetylcholine detection based on pH sensitive fluorescent carbon quantum dots, Sensor. Actuat. B- Chem. 369 (2022) 132268. https://doi.org/10.1016/j.snb.2022.132268
Wei Q., Zhang P., Liu T., Pu H., and Sun D. W. - A fluorescence biosensor based on single-stranded DNA and carbon quantum dots for acrylamide detection, Food Chem. 356 (2021) 129668. https://doi.org/10.1016/j.foodchem.2021.129668
Afsharipour R., Haji Shabani A. M., and Dadfarnia S. - A selective off–on fluorescent aptasensor for alpha-fetoprotein determination based on N-carbon quantum dots and oxidized nanocellulose, J. Photoch. Photobio. A. 428 (2022) 113872. https://doi.org/ 10.1016/j.jphotochem.2022.113872
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.