Studies on electrical conductance and activation parameters of parchment supported lead molybdate model membrane

Author affiliations

Authors

DOI:

https://doi.org/10.15625/2525-2518/20164

Keywords:

Lead molybdate model membrane, Electrical conductance, Thermodynamic activation parameters

Abstract

The ion-interaction approach was used to develop a lead molybdate parchment supported membrane. FT-IR, XRD,  TGA, SEM, TEM, and EDX investigations were used to determine the physicochemical parameters. At temperatures ranging from 10 to 50°C, the membrane conductivity in contact with different alkali metal ions was investigated.. The electrical conductivity of the membrane was discovered to increase with temperature. The value of membrane conductance for metals follows the cation sequence: K+> Na+> Li+. Using the proper procedure, the thermodynamic activation parameters, such as Ea, ΔHo, ΔGo, and ΔSo were calculated using the appropriate method. The ΔSo values were found to be negative, suggesting that diffusion occurs in the membrane phase with partial immobilisation

Downloads

Download data is not yet available.

References

1. Nasim Beg M., Siddiqi F. A., Shyam R., Altaf I. - Studies with inorganic precipitate membranes: Part XXVI. Evaluation of membrane selectivity from electric potential and conductivity measurements, J. Electroanal Chem. Interfacial Electrochem 98 (2) (1979) 231-240. https://doi.org/10.1016/S0022-0728(79)80263-6.

2. Singh K. P., Dobhal R., Prajapati R. K., Kumar S., Sanjesh, Ansarid M. A. - Preparation of isoproturon and 2,4-dichlorophenoxy acetic acid imprinted membranes: Ion transport study, Desalin Water Treat. 24 (1 - 3) (2010) 176-189. https://doi.org/10.5004/DWT. 2010.1497.

3. Thanh Hoai Ta Q., Ngoc Tri N., Noh J. S. - Improved NO2 gas sensing performance of 2D MoS2/Ti3C2Tx MXene nanocomposite, Appl. Surf. Sci. 604 (2022) 154624. https://doi.org/10.1016/J.APSUSC.2022.154624.

4. Prajapati R. K., Ansari M. A., Iqbal H. - Sustainable Municipal Solid Waste Management through Membrane Science and Technology, Waste Recover. Manag. an Approach Towar. Sustain. Dev. Goals (2023) 323-342. https://doi.org/10.1201/9781003359784-18.

5. Teorell T. - Studies on the “Diffusion Effect” upon Ionic Distribution, Some Theoretical Considerations, Proc. Natl. Acad. Sci. 21 (3) (1935) 152-161. https://doi.org/10.1073/ PNAS.21.3.152.

6. Zehra A., Khan M. M. A. - Rafiuddin - Modified composite cation exchange membrane with enhanced stability and electrochemical performance, J. Solid State Electrochem 25 (2) (2021) 489-504. https://doi.org/10.1007/S10008-020-04821-W/TABLES/3.

7. Ansari A., Shukla A. K., Ansari M. A. - Preparation, characterization and electrical conductance studies of inorganic precipitate parchment supported barium molybdate membrane, Mater. Today Proc. 47 (2021) 1445-1451. https://doi.org/10.1016/ J.MATPR.2021.03.302.

8. Arsalan M., Rafiuddin - Fabrication, characterization, transportation of ions and antibacterial potential of polystyrene based Cu3 (PO4)2/Ni3 (PO4)2 composite membrane, J. Ind. Eng. Chem. 20 (5) (2014) 3568-3577. https://doi.org/10.1016/ j.jiec.2013.12.050.

9. Arsalan M., Zehra A., Khan M. M. A., Rafiuddin - Preparation and characterization of polyvinyl chloride based nickel phosphate ion selective membrane and its application for removal of ions through water bodies, Groundw. Sustain. Dev. 8 (2019) 41-48. https://doi.org/10.1016/j.gsd.2018.06.008.

10. Ishrat U., Dar A. M., Rafiuddin - Synthesis, characterization and electrochemical properties of cation selective ion exchange composite membranes, Arab. J. Chem. 12 (4) (2019) 580-587. https://doi.org/10.1016/J.ARABJC.2014.08.023.

11. Elsherif K. M., Yaghi M. M. - Studies with Model Membrane: The Effect of Temperature on Membrane Potential, Moroccan J. Chem. 5 (1) (2017) J. Chem. 5 N°1 (2017) 131-138. https://doi.org/10.48317/IMIST.PRSM/MORJCHEM-V5I1.6324.

12. Nasim Beg M., Siddiqi F. A., Singh S. P., Prakash P., Gupta V. - Studies with inorganic precipitate membrane: evolution of thermodynamically effective fixed charge density and test of the most recently developed theory of membrane potential based on the principles of non-equilibrium thermodynamics, Electrochim. Acta 24 (1) (1979) 85-88. https://doi.org/10.1016/0013-4686(79)80046-8.

13. Beg M. N., Ahmad K., Altaf I., Arshad M. - Ionic transport of alkali chlorides in parchment supported cupric orthophosphate membrane and application of absolute reaction rate theory, J. Memb. Sci. 9 (3) (1981) 303-311. https://doi.org/10.1016/S0376-7388(00)80271-9.

14. Zwolinski B. J., Eyring H., Reese C. E. - Diffusion and membrane permeability. I, J. Phys. Colloid Chem. 53 (9) (1949) 1426-1453. https://doi.org/10.1021/J150474A012.

15. Brooke N. M., Rees L. V. C. - Kinetics of ion exchange. Part 1, Trans. Faraday Soc. 64 (0) (1968) 3383-3392. https://doi.org/10.1039/TF9686403383.

16. I S., S B. - Electrolytes, Pharmacol. Vet. Anesth. Analg. (2019) 362-369. https://doi.org/ 10.1002/9781118975169.ch29.

17. Bahru J., Syarifah M., Syakiylla N., et al. - Poly (Ether Ether Ketone) Based Anion Exchange Membrane for Solid Alkaline Fuel Cell: A Review, J. Membr. Sci. Res. 5 (3) (2019) 205-215. https://doi.org/10.22079/JMSR.2018.86969.1194.

18. Kim J. F. - Recent Progress on Improving the Sustainability of Membrane Fabrication, J. Membr. Sci. Res. 6 (3) (2020) 241-250. https://doi.org/10.22079/JMSR. 2019.106501.1260.

19. Iijima T., Obara T., Isshiki M., Seki T., Adachi K. - Ionic transport of alkali chlorides in nylon membrane, J. Colloid Interface Sci. 63 (3) (1978) 421-425. https://doi.org/ 10.1016/S0021-9797(78)80003-4.

20. Beg M. N., Siddiqi F. A., Shyam R. - Studies with inorganic precipitate membranes: Part XIV. Evaluation of effective fixed charge densities, Can. J. Chem. 55 (10) (1977) 1680-1686. https://doi.org/10.1139/v77-237.

21. Beg M. N., Siddiqi F. A., Shyam R., Altaf I. - Studies with inorganic precipitative membranes. XI. Membrane potential response, characterization and evaluation of effective fixed charge density, J. Electroanal. Chem. 89 (1) (1978) 141-147. https://doi.org/10.1016/S0022-0728(78)80039-4.

22. Beg M. N., Matin M. A. - Studies with nickel phosphate membranes: Evaluation of charge density and test of recently developed theory of membrane potential, J. Memb. Sci. 196 (1) (2002) 95-102. https://doi.org/10.1016/S0376-7388(01)00582-8.

23. Lakshminarayanaiah N. - Transport phenomena in membranes. https://cir.nii.ac.jp/crid/ 1130282272797504384Accessed12 February 2024.

24. Arsalan M., Rafiuddin - Fabrication, characterization, transportation of ions and antibacterial potential of polystyrene based Cu3 (PO4)2/Ni3 (PO4)2 composite membrane, J. Ind. Eng. Chem. 20 (5) (2014) 3568-3577. https://doi.org/10.1016/J.JIEC. 2013.12.050.

25. Ansari A., Shukla A. K., Ansari M. A. - Potentiometric determination of fixed charge density and antibacterial activity of barium molybdate model membrane, Malaysian J. Chem. 23 (3) (2021) 92-107. https://ksascholar.dri.sa/en/publications/potentiometric-determination-of-fixed-charge-density-and-antibactAccessed12 February 2024.

26. Nichka V. S., Mareev S. A., Apel P. Y., Sabbatovskiy K. G., Sobolev V. D., Nikonenko V. V. - Modeling the Conductivity and Diffusion Permeability of a Track-Etched Membrane Taking into Account a Loose Layer, Membr. 2022, Vol. 12, Page 1283 12 (12) (2022) 1283. https://doi.org/10.3390/MEMBRANES12121283.

27. Bondarenko M., Yaroshchuk A. - Computational Design of an Electro-Membrane Microfluidic-Diode System, Membr. 13 (2) (2023) 243. https://doi.org/10.3390/ MEMBRANES13020243.

28. Kumins C. A. - Transport through polymer films, J. Polym. Sci. Part C Polym. Symp. 10 (1) (1965) 1-9. https://doi.org/10.1002/POLC.5070100103.

29. Glasstone S., Laidler K. J. (Keith J., Eyring H. - The theory of rate processes : the kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena (1941). https://ci.nii.ac.jp/ncid/BA4327824XAccessed27 April 2025.

30. Shuler K. E., Dames C. A., Laidler K. J. - The Kinetics of Membrane Processes. III. The Diffusion of Various Non‐Electrolytes through Collodion Membranes, J. Chem. Phys. 17 (10) (1949) 860-865. https://doi.org/10.1063/1.1747078.

31. Barrer R. M., Skirrow G. - Transport and equilibrium phenomena in gas–elastomer systems. I. Kinetic phenomena, J. Polym. Sci. 3 (4) (1948) 549-563. https://doi.org/ 10.1002/POL.1948.120030410.

32. Tien H. T., Hie Ping Ting - Permeation of water through bilayer lipid membranes, J. Colloid Interface Sci. 27 (4) (1968) 702-713. https://doi.org/10.1016/0021-9797(68)9 0104-5.

Downloads

Published

25-06-2025

How to Cite

[1]
Mohd Ayub Ansari, Dileep Kumar Singh, Haider Iqbal, and Manoj Kumar, “Studies on electrical conductance and activation parameters of parchment supported lead molybdate model membrane”, Vietnam J. Sci. Technol., vol. 63, no. 3, pp. 502–516, Jun. 2025.

Issue

Section

Materials

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

You may also start an advanced similarity search for this article.