Microbial Pigment Production for Sustainable Production: a review
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/21069Keywords:
Biopigments, microbial fermentation, microorganism, colour, bioactive natural products., agricultural wasteAbstract
Microbial pigments have great potential and strength to produce natural color on an industrial scale at an affordable cost. However, their development faces challenges due to the presence of inexpensive synthetic pigments dominating the market. These synthetic pigments often contain azo dyes, which are harmful to human health and the environment. Hence, there is an urgent need for regulations, prevention measures, and research to shift from synthetic to natural pigments. Despite this, microbial pigments are gaining attention as alternatives in various industries. Challenges in producing them on an industrial scale include pigment stability, product shelf life, and expensive raw materials. This review aims to provide a systematic and precise description of how microbial pigments are developed from raw materials, outlining specific phases for their production. Additionally, it will highlight technological challenges and limitations faced in their utilization.
Downloads
References
1. Malik K., and Tokas J - Microbial pigments: A review, Int. J. Microbiol. Res. Technol. 1 (1) (2012) 1-9.
2. Diacu E. - Colors: Properties and determination of synthetic pigments, Encycl of Food and Health. (2016) 284-290. https://doi.org/10.1016/B978-0-12-384947-2.00278-3.
3. Kushwaha, S. A., Saraswat Priti, Kumar, and Saxena Jyoti - Colorful world of microbes: Carotenoids and their applications, Adv. in Biol. (2014) 1-13. doi:10.1155/2014/837891
4. Tuli, H. S., Chaudhary, P., Beniwal, V. and Sharma, A. K. - Microbial pigments as natural color sources: current trends and future perspectives, J. Food Sci Technol. 52 (8) (2015) 4669-4678. doi:10.1007/s13197-014-1601-6
5. Yadav, D. - Optimization and characterization of pigment produced from the bacteria Serratia nematodiphila, Doctoral dissertation, Banaras Hindu University Varanasi. (2017).
6. Venil, C. K., Zakaria, Z. A. and Ahmad, W. A. - Bacterial pigments and their applications. Process Biochem. 48 (7) (2013) 1065-1079. doi: 10.1016/j.procbio.2013.06.006
7. Pombeiro-Sponchiado, S. R., Sousa, G. S., Andrade, J. C. R., Lisboa, H. F. and Gonçalves, R. C. R. - Production of Melanin pigment by fungi and its biotechnological applications, Melanin. 1(4) (2017) 47-75.
8. Kanchan Heer, a. S. S. - Microbial pigments as a natural color: A review, Int. J. Pharm. Sci. Res. 8 (5) (2017) doi:10.13040/IJPSR.0975-8232.8
9. Sen, T., Barrow, C. J. and Deshmukh, S. K. - Microbial pigments in the food industry-challenges and the way forward. Front Nutr, 6 (7) (2019) doi:10.3389/fnut.2019.00007
10. Nigam, P. S. and Luke, J. S. - Food additives: production of microbial pigments and their antioxidant properties, Curr. Opin. Food Sci. (7) (2016) 93-100. doi: 10.1016/j.cofs.2016.02.004
11. Alem, D., Marizcurrena, J. J., Saravia, V., Davyt, D., Martinez-Lopez, W. and Castro-Sowinski, S. - Production and antiproliferative effect of violacein, a purple pigment produced by an Antarctic bacterial isolate, World J. Microbiol. Biotechnol. 36 (2020) 1-11.
12. Athmika, Ghate, S. D., Arun, A. B., Rao, S. S., Kumar, S. A., Kandiyil, M. K., Saptami K., and Rekha, P. D. - Genome analysis of a halophilic bacterium Halomonas malpeensis YU-PRIM-29T reveals its exopolysaccharide and pigment producing capabilities, Scientific Reports. 11 (1) (2021) 1749.
13. Azman, A., Azmi, M. S., and Adnan, N. A. - Isolation and characterization of pigment-producing bacteria from various environmental sources, Int. J. Microbiol. (2018) Article ID 2789362. https://doi.org/10.1155/2018/2789362.
14. Umamaheswari S, I. A. P. - Screening of yellow pigment producing bacterial isolates from various eco-climatic areas and analysis of the carotenoid produced by the isolate, J. Food Process. Technol. 5 (1) (2013) doi:10.4172/2157-7110.1000292
15. Yangilar, F., and Yildiz, P. O. - Microbial pigments and the important for food industry, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (2) (2016) doi:10.18185/eufbed.55880
16. Panesar, R., Kaur, S., and Panesar, P. S. - Production of microbial pigments utilizing agro-industrial waste: A review, Curr. Opin. Food Sci., (1) (2015) 70-76. doi: 10.1016/j.cofs.2014.12.002
17. Usman, M. M., Khan, N. Z. and Ali, Z. - Bacterial pigments: An alternative to synthetic colors in food and textiles, Microb. Biotechnol. Rep. 11 (2) (2017) 45–51.
18. Huang, J., Song, S., Wang, J. and Liu, J. - Bacterial pigments: Bioactive properties and industrial applications, Crit. Rev. Biotechno. 41 (1) (2021)35–51.
19. Pradel, E., Blanchard, L. and Garcia, D. - Pigment-producing bacteria in cosmetics: Genomic and biotechnological potential, J. Ind. Microbiol. Biotechnol. 48 (56) (2021) 401–416.
20. Allahkarami, M., Zarei, O., Jafari, P. and Sepahi, A. A. - Applications of microbial pigments in industries: An insight, Biotechnol. Reports. 30 (2021) 10.1016/j.btre.2021.68.
21. Ratnakaran, D., Kumar, P. P. and Ramasamy, R. - Comparison of bacterial isolation techniques for pigment production, Int. J. Microbiol. (2020) 8-12.
22. Capretto, L. and Clarke, S. - Microbiological methods (5th ed.), Wiley (2019)
23. Shah, M. S. - Isolation of pigment producing bacteria and testing of antimicrobial activity of bacterial pigments, Int. J. Res. Appl. Sci. Eng. Technol. 7 (2) (2019) 169-173. doi:10.22214/ijraset.2019.2025
24. Jumare, F. I., Hauwa, B. A., Ibrahim, A. D., Baki, A. S., Farouq, A. A. and Hizbullahi, M. U. - Biocolorants production by pigment-producing bacteria isolated from soil, Asian J. Biotechnol. Bioresour. Technol. (2019) 1-16. doi:10.9734/ajb2t/2018/v4i430047
25. Jeong, S. H., Kim, Y. K., Lee, H. S. and Cho, H. H. - Isolation of xanthophyll pigment-producing marine bacterium Erythrobacter sp. strain SDW, Marine Biotechnology 24 (3) (2022) 456–465.
26. Carini, P., Steindler, L., Beszteri, S. and Giovannoni, S. J. - Cultivation of the marine oligotrophs “SAR11” under nutrient-rich conditions, Appl. Environ. Microbiol. 79 (14) (2013) 4444–4451.
27. Sideek, M., Marimuthu, M. and Bala, K. - Limitations and advancements in microbial cultivation methods, Microbial Technology Journal 15 (4) (2022) 301–310.
28. Díaz-García, L., Tapia-Hernández, J. A., Mena-Covarrubias, J. and Rodríguez-Gómez, C. -Dilution-to-extinction method for selecting stable microbial communities, Microbial Ecology. 80 (2) (2020) 321–333.
29. Kristjansson, J. K. and Stetter, K. O. - Thermophilic bacteria and their potential in biotechnology, Appl. Microbiol. Biotechnol. 40 (1) (1994) 38-45.
30. Anzum, A., Naz, I. and Ahmad, T. - Pigment-producing Aeromonas sobria and its characterization for biotechnological applications, J. Soil Sci. Plant Nutr. 22 (4) (2022) 3511-3524.
31. Marin-Sanhueza, C., Echeverria-Vega, A., Gomez, A., Cabrera-Barjas, G., Romero, R., and Banerjee, A.- Melanin production by Bacillus haynesii from Chilean hot springs, Microbial Ecology (2022).
32. Wibowo, J. T., Kellermann, M. Y., Petersen, L.-E., Alfiansah, Y. R., Lattyak, C. and Schupp, P. J. - Characterization of an insoluble and soluble form of melanin produced by Streptomyces cavourensis SV 21, a sea cucumber-associated bacterium, Marine Drugs 20 (1) (2022) 54.
33. Elsayis, T. A., Ibrahim, H. M. and Ahmed, R. A. - Hortaea werneckii: A dark-pigmented marine yeast with antioxidant and metal removal potential, Int. J. Environ. Sci. Technol. 19 (7) (2022) 4555–4567. https://doi.org/10.1007/s13762-022-03943-6
34. Pachaiyappan, B., Venkatesan, R., Muthusamy, K. and Thajuddin, N. - Microbial pigments and their potential applications in the food industry: A review, Environ. Sci. Pollut. Res. 27 (1) (2020) 1-10. https://doi.org/10.1007/s12649-020-01169-0
35. Jayaraman, J. D., Sigamani, S., Arul, D., Nedunchelizan, K., Pachiappan, P. and Ramamurthy, D. - Molecular characterization and antioxidant assay of pigment producing bacteria, Sphingomonas paucimobilis and Microbacterium arborescens isolated from fresh water sediments, Natural Product Research 34 (8) (2020) 1192-1196.
36. Hizbullahi, M. U., Farouq, A. A., Baki, A. S., Ibrahim, A. D., Hauwa, B. A. and Jumare, F. I.- Biocolorants production by pigment-producing bacteria isolated from soil, Asian J. Biotechnol. Bioresour. Technol. 4 (4) (2018) 1-16.
37. Vijayan, A. K., Yoshikawa, T., Watanabe, S., Sasaki, H., Matsumoto, K., Saito, S. I., Takeda S. and Furuya, K. - Influence of non-photosynthetic pigments on light absorption and quantum yield of photosynthesis in the western equatorial Pacific and the subarctic North Pacific, Journal of Oceanography 65 (2009) 245-258.
38. Wu, Z., Song, Y., Xie, Q., Yin, L., Chen, W., Xiang, X. and Chen, H.- Pigment production and characterization of violet-pigmented Pseudoalteromonas amylolytica sp. from surface seawater, Marine Biotechnology 19 (4) (2017) 551-563. https://doi.org/10.1007/s10126-017-9764-4
39. Haripriya, S., Lakshmanaperumalsamy, M., Suganthi, M., Bhaskar, T. and Selvin, S.- Characterization of yellow pigment-producing Micrococcus flavus from marine sediment. Marine Biotechnology 12 (4) (2022) 223-231. https://doi.org/10.1007/s10126-022-10078-5
40. El Naggar, N. E., Shaheen, N., Tash, M. and Soliman, M. - Melanin production by Streptomyces glaucescens and its application as a natural antioxidant for industrial uses. Process Biochem. 54 (2) (2017) 73-82. https://doi.org/10.1016/j.procbio.2016.12.020
41. Zhang, X., Ma, X., Wang, N. and Yao, T. - New subgroup of Bacteroidetes and diverse microorganisms in Tibetan plateau glacial ice provide a biological record of environmental conditions, FEMS Microbiol Ecol. 67 (1) (2009) 21-29. doi:10.1111/j.1574-6941.2008. 00604.x
42. Kazi, F. K., Alam, S. R. and Saha, S. - Streptomyces sp.: Efficient producer of brown pigment using wheat bran, Journal of Environ. Microbiol. 19 (3) (2022) 245-258.
43. Jigna, S., Jadhav, H. R. and Sharma, S. - Isolation and characterization of Bacillus pumilus strain for microbial pigment production under optimal conditions, Environ. Sci. and Pollution Research 29 (5) (2022) 1-12. https://doi.org/10.1007/s12649-022-01516-4
44. Afra, M. P., Vankar, P. S. and Patel, A. - Red pigment production from Arthrobacter sp. isolated from seawater and optimization of growth conditions, Journal of Appl. Microbiol. 123 (3) (2017) 625-634. https://doi.org/10.1111/jam.13443
45. Saleem, H., Mazhar, S., Syed, Q., Javed, M. Q. and Adnan, A. - Pigment-producing Pseudomonas aeruginosa from aquatic sources and its industrial applications, Aquatic Microbiol. 14 (4) (2021) 422-431.
46. Tarangini, K. and Mishra, S. - Production of bio-pigment from vegetable waste by Pseudomonas guinea, Biochem. Engineering Journal 5 (1) (2013) 12-18.
47. Hana Yi, S. and Chun, J. - Description of Zooshikella ganghwensis sp. nov., a red pigment-producing marine bacterium, Int J Syst Evol Microbiol. 53 (4) (2003) 1225-1231.
48. Nakashima, T., Kurachi, M., Kato, Y., Yamaguchi, K. and Oda, T - Production of red pigment by Proteobacterium Hahella sp. isolated from seawater. Journal of Industrial Microbiology and Biotechnology 32 (5) (2005) 245-251. https://doi.org/10.1111/j.1348-0421.2005.tb03744.x
49. Haile, S., Masi, C. and Tafesse, M. - Isolation and characterization of pectinase-producing bacteria (Serratia marcescens) from avocado peel waste for juice clarification. BMC Microbiol. 22 (1) (2022) 145.
50. Keekan, K. K., Hallur, S., Modi, P. K. and Shastry, R. P. - Potential of Talaromyces purpureogenus in red pigment production and its characterization. Journal of Applied Microbiology 128 (6) (2020) 1622-1632.
51. Brady, N. C. and Weil, R. R. - The Nature and Properties of Soils (15th Edition), Pearson. (2016).
52. Anugraha, A. C., Pandya, Y. and Yadav, S. K. - Rhizosphere and its role in plant-microbe interactions: A review, J. Appl. Biol. Biotechnol. 9 (1) (2021) 110-118.
53. Aranda, S., Montes-Borrego, M. and Landa, B. B. - Purple-pigmented violacein-producing Duganella spp. in the rhizosphere: An emerging group of bacteria with potential biotechnological applications, FEMS Microbiology Ecology 77 (2) (2011) 210–222.
54. Bakker, P. A. H. M., Pieterse, C. M. J. and van Loon, L. C. - Induced systemic resistance by beneficial microbes, Annu. Rev. Phytopathol. 51 (2013) 211–234.
55. Duran, N., Justo, G. Z., Ferreira, C. V., Melo, P. S., Cordi, L. and Martins, D. - Violacein: Properties and biological activities, Biotechnol. Appl. Biochem. 33 (3) (2001) 123–132.
56. Rettori, D. and Duran, N. - Production, extraction, and purification of violacein: An antibiotic pigment produced by Chromobacterium violaceum, World J. Microbiol. Biotechnol. 14 (5) (1998) 665–668.
57. Basak, K. and Majumdar, S. K. - Melanin synthesis by Streptomyces spp., Appl. Microbiol. Biotechnol. 47 (2009) 83–89.
58. Gross, H. and Loper, J. E. - Genomics of secondary metabolite production by Pseudomonas spp., Natural Product Reports 26 (11) (2009) 1408-1446.
59. Chattopadhyay, M. K. and Jagannadham, M. V. - Maintenance of membrane fluidity in Antarctic bacteria through the synthesis of carotenoids, Antonie van Leeuwenhoek 79 (4) (2001) 311–318.
60. Fox, E. M. and Howlett, B. J. - Secondary metabolism: Regulation and role in fungal biology. Current Opinion in Microbiology 11 (6) (2008) 481-487.
61. Madigan, M. T., Martinko, J. M., Stahl, D. and Clark, D. P. - Brock Biology of Microorganisms (13th Edition), Benjamin Cummings. (2010) ISBN: 032164963X.
62. Alem, S. - Pigment production by Antarctic microbes in extreme conditions, Microbial Ecology (2020).
63. Afra, A., Ali, N. and Saleem, M. - Identification and characterization of red pigment producing Arthrobacter sp. isolated from seawater, Int. J. Biosci. 10 (3) (2017) 23-30.
64. Collins, T. and Margesin, R. - Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools, Appl. Microbiol. Biotechnol. 103 (2019) 2857-2871.
65. Thebti, W., Riahi, Y., Gharsalli, R. and Belhadj, O. - Screening and characterization of thermo-active enzymes of biotechnological interest produced by thermophilic Bacillus isolated from hot springs in Tunisia. Acta Biochimica Polonica 63 (3) (2016) 581-587.
66. Sharma, N., Kumar, J., Abedin, M. M., Sahoo, D., Pandey, A., Rai, A. K., and Singh, S. P. - Metagenomics revealing molecular profiling of community structure and metabolic pathways in natural hot springs of the Sikkim Himalaya, BMC microbiology 20 (2020) 1-17.
67. Mukherjee S., ArunimaSaha A. K. R., Chowdhury A. R., and Mitra A. K. - Identification and characterization of a green pigment producing bacteria isolated from Bakreshwar Hot Spring, West Bengal, India, Int. J. Environ. Sci. Res. 2 (1) (2012) 126-129.
68. Mohammad, B. T., Al Daghistani, H. I., Jaouani, A., Abdel-Latif, S. and Kennes, C. - Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes, Int. J. Microbiol. 2017 (1) (2017) 6943952.
69. Ray, P. H., White, D. C. and Brock, T. D. (1971). Effect of growth temperature on the lipid composition of Thermus aquaticus, Journal of Bacteriology 108 (1) 227-235.-
70. DasSarma, S. and DasSarma, P. – Halophiles, Encyclopedia of Life Sciences, John Wiley & Sons, Ltd. (2012) https://doi.org/10.1002/9780470015902.a0000399.pub2
71. Rodriguez Valera, F., Ruiz Berraquero, F. and Ramos Cormenzana, A. - Haloalkaliphilic bacteria: Isolation and characterization, Archives of Microbiology (1980).
72. Gordhanbhai, D., Pankhaniya, M., Chavda, J. and Kurian, N. K.- Characterization of melanin from Bacillus altitudinis isolated from salt sediments, The Reprint Server for Biology, 2022 bioRxiv. https://doi.org/10.1101/2022.03.15.484403
73. Dindhoria, K., Kumar, R., Bhargava, B. and Kumar, R. - Metagenomic assembled genomes indicated the potential application of hypersaline microbiome for plant growth promotion and stress alleviation in salinized soils, Msystems. 9 (3) (2024) e01050-23.
74. Kumari, M., Karn, S. K., & Raj, V. - Extremophiles and Related Extremozymes: Their Structure-Function Relationship in Industrial Applications. Industrial Biotechnology 20 (6) (2024) 279-295.
75. So, Y., Chhetri, G., Kim, I., Kang, M., Kim, J., Lee, B., ... & Seo, T. (2022). Halomonas antri sp. nov., a carotenoid-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol. 72 (3) 005272.
76. Dutta, J. and Bandopadhyay, R. - Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications, Frontiers in Microbiology. 13 (2022) 1-18. https://doi.org/10.3389/fmicb.2022.885455
77. Chen, X., Wei, L. and Li, W. - Acidophilic bacteria and their role in pigment biosynthesis in acidic environments, Microbial Ecology 80 (2) (2020) 411-421. DOI: 10.1007/s00248-019-01449-0.
78. Deosthali, G. and Sajwani, A. - Extremophiles: applications and adaptive strategies, Int. J. Res. Trends Innovation 7 (10) (2022) 1729.
79. Tapadar, S., Tripathi, D., Pandey, S., Goswami, K., Bhattacharjee, A., Das, K., Palwan S. and Kumar, A. - Role of extremophiles and extremophilic proteins in industrial waste treatment, Removal of emerging contaminants through microbial processes, Singapore: Springer Singapore (2021) 217-235.
80. Salwan, R. and Sharma, V. - Overview of extremophiles. In Physiological and biotechnological aspects of extremophiles, Academic Press. (2020) (pp. 3-11).
81. Kishimoto, N., Kosako, Y. and Tano, T. - Acidiphilium aminolytica sp. nov.: an acidophilic chemoorganotrophic bacterium isolated from acidic mineral environment, Current microbiology 27 (1993) 131-136.
82. Hiraishi, A., Kishimoto, N., Kosako, Y., Wakao, N. and Tano, T. - Phylogenetic position of the menaquinone-containing acidophilic chemo-organotroph Acidobacterium capsulatum. FEMS microbiology letters 132 (1-2) (1995) 91-94.
83. Oshkin, I. Y., Kulichevskaya, I. S., Rijpstra, W. I. C., Sinninghe Damsté, J. S., Rakitin, A. L., Ravin, N. V., & Dedysh, S. N. - Granulicella sibirica sp. nov., a psychrotolerant acidobacterium isolated from an organic soil layer in forested tundra, West Siberia, Int J Syst Evol Microbiol. 69 (4) (2019) 1195-1201.
84. Pandey, A. and Kumar, S. - Carotenoid production by Alicyclobacillus acidoterrestris under extreme acidic conditions, Bioresour. Technol. 377 (2023) 128998. DOI:10.1016/ j.biortech.2023.128998.
85. Golyshina, O. V., Pivovarova, T. A., Karavaĭko, G. I. and Golyshin, P. N- Ferroplasma: A microorganism from extreme environments, FEMS Microbiology Letters 50 (3) (2000) 997-1006.
86. Ferrer, M., Golyshina, O. V., Beloqui, A., Golyshin, P. N. and Timmis, K. N. - Biological electricity production from Ferroplasma species, Nature Biotechnol. 445 (7123) (2007) 91-94
87. Kanmani, P., Karthik, S., Aravind, J. and Kumaresan, K. - The use of response surface methodology as a statistical tool for media optimization in lipase production from the dairy effluent isolate fusarium solani, ISRN Biotechnol. (2013) 528708. doi:10.5402/2013/528708
88. Ekpenyong, M. G., Antai, S. P., Asitok, A. D. and Ekpo, B. O. - Plackett-Burman Design and Response Surface Optimization of medium trace nutrients for glycolipopeptide biosurfactant production, Iran Biomed J. 21 (4) (2017) 249-260. doi: 10.18869/acadpub.ibj.21.4.249
89. Mishra, B., Varjani, S. and Karthikeya Srinivasa Varma, G. - Agro-industrial by-products in the synthesis of food grade microbial pigments: An eco-friendly alternative, In green Bio-processes (2019) 245-265.
90. Choksi, J., Vora, J. and Shrivastava, N. - Bioactive pigments from isolated bacteria and its antibacterial, antioxidant and sun protective application useful for cosmetic products, Indian J Microbiol. 60 (3) (2020) 379-382. doi:10.1007/s12088-020-00870-x
91. Embaby, A. M., Hussein, M. N. and Hussein, A. - Monascus orange and red pigments production by Monascus purpureus ATCC16436 through co-solid state fermentation of corn cob and glycerol: An eco-friendly environmental low cost approach, PLoS One 13 (12) (2018) e0207755. doi: 10.1371/journal.pone.0207755
92. Aruldass, C. A., Gunasekaran, R. and Sabaratnam, V. - Production of yellowish-orange pigment from Chryseobacterium artocarpi using liquid pineapple waste as a substrate, Bioprocess Eng. 9 (3) (2016) 156-164.
93. Akpinar, M., Ozturk, U. and Kose, T. - Influence of substrate on fungal laccase production under solid-state fermentation, J. Environ. Biol. 38 (2) (2017) 245-252.
94. Qureshi, A. S., Bhatti, M. A. and Jamil, A. - Coproduction of pectinase and lipase enzymes using fruit peels in fermentation processes, Journal of Microbial Biochem. 23 (5) (2017) 451-460.
95. Oshoma, D., Adeyemi, I. A. and Olaoye, J. O. - Production of amylase enzyme from agricultural wastes and its effect on microbial growth, Appl. Environ. Microbiol. 5 (3) (2017) 89-96. DOI: 10.12691/jaem-5-3-3.
96. Claira, R., Shubha, M. and Savitha, M. - Production of microbial pigments using apple pomace as a substrate, IJBB 12 (2) (2016) 147-154. DOI: 10.1023/ijbb.2016.0034.
97. Hamano, Y. - Role of corn steep liquor in microbial pigment production, Journal of Bioscience and Bioengineering 101 (3) (2006) 239-245.
98. Kumar, A., Singh, D. and Yadav, S. K. - Optimization of bacteriocin production by Lactobacillus casei using whey as a growth medium: A statistical approach, J. Dairy Sci. Technol. 98 (3) (2012) 207-215. DOI: 10.1016/j.jdsci.2012.04.004.
99. Daud, F., Rosli, M. I. and Hamid, M. A. - Optimization of red pigment production by Monascus purpureus using oil palm frond, Process Biochem. 93 (1) (2020) 142-151.
100. de Oliveira, J. E., de Souza, R. A. and da Silva, R. A. - Evaluation of maltose syrup as a carbon source for pigment production by Monascus ruber, Bioprocess Eng. 23 (7) (2019) 1185-1192.
101. Shinya, M. and Nishikawa, S. - Pigment production by Rhodotorula sp. using cassava bagasse, Ferment. Technol. 14 (2) (2022) 328-340.
102. Kazi, F. K., Alam, S. R. and Saha, S. - Streptomyces sp.: Efficient producer of brown pigment using wheat bran, Environ. Microbiol. 19 (3) (2022) 245-258.
103. Haque, F., Hasnat, A. and Moniruzzaman, M. - Bioconversion of bakery waste into red pigments by Monascus purpureus, Biotechnology Reports 9 (1) (2016) 85-92.
104. Tarangini, K. and Mishra, S. - Production of bio-pigment from vegetable waste by Pseudomonas guinea, Biochem. Eng. Journal 5 (1) (2013) 12-18.
105. Babitha, S., Soccol, C. R. and Pandey, A. - Jackfruit seed as a novel substrate for red pigment production by Monascus species: Use in food systems, Food Technol. Biotechnol. 46 (3) (2008) 335-341.
106. Zhang, Y., Li, D. and Wang, L. - Pulse electric field-assisted extraction of bioactive compounds from plant materials, J. Food Sc. 83 (5) (2018) S1448-S1456.
107. Saini, R. K., Shetty, P. H., Prakash, R. and Giridhar, P. - Thermal degradation and isomerization of microbial pigments during dehydration techniques: A review, Int. J. Food Sci. Technol. 49 (9) (2014) 2065-2072. https://doi.org/10.1111/ijfs.12494.
108. Lee, J., Lee, Y. and Kim, B. - High pressure homogenization for the extraction of bioactive compounds from plant materials, J. Food Sci. 82 (5) (2017) S1448-S1456.
109. Herrero, M., Mendiola, J. A., Cifuentes, A. and Ibáñez, E. - Supercritical fluid extraction: Recent advances and applications, J. Chromatogr. A. 1217 (16) (2010) 2495-2511.
110. Durante, M., Lenucci, M. S. and Mita, G. - Impact of pulse electric fields on the extraction of microbial pigments, IFSET 25 (2014) 91-98.
111. Wang, L., Zhang, J. and Li, D. - Enzyme-assisted extraction of bioactive compounds from plant materials, J. Food Sci. 84 (5) (2019) S1448-S1456.
112. Mishra, S., Varjani, S. and Karthikeya Srinivasa Varma, K. - Fermentation-based production of microbial pigments. J. Food Sci. Tech. 56 (2) (2019) 531-542.
113. Pasquet, V., Chérouvrier, J. R., Farhat, F., Thiéry, V., Piot, J. M., Bérard, J. B. and Picot, L. - Study on the microalgal pigments extraction process: Performance of microwave assisted extraction, Process Biochemistry 46 (1) (2011) 59-67.
114. Mezzomo, N., Thomazini, M. and Vicente, A. A. - Extraction of astaxanthin and total carotenoids from pink prawns (Penaeus brasiliensis and P. paulensis) residue using conventional and novel techniques, Food Res. Int. 44 (1) (2011) 104-112. https://doi.org/10.1016/j.foodres.2010.10.017.
115. Alfonsi, P., Ortar, G. and Masotti, A. - Solvent selection for extraction of bioactive compounds from natural sources, Nature 450 (7173) (2008) 1-12. https://doi.org/10.1038/s41598-018-38198-3.
116. Capello, C., Fischer, U. and Hungerbühler, K. - Solvents and their environmental impact. Chemical Reviews 107 (4) (2007) 1071-1105. https://doi.org/10.1021/cr068054v.
117. Wani, S. H., Bhat, R. and Sheikh, S. A. - Green extraction methods for microbial pigments: A review, Crit. Rev. Food Sci. Nutr. 61 (1) (2021) 1-14. https://doi.org/10.1080/10408398.2020.1739240.
118. Morón-Ortiz, Á., Mapelli-Brahm, P. andMeléndez-Martínez, A. J. - Sustainable green extraction of carotenoid pigments: innovative technologies and bio-based solvents. Antioxidants 13 (2) (2024) 239.
119. Puértolas, E., Cregenzán Alberti, O., Luengo, E., Álvarez, I. and Raso, J. - Pulse electric field for anthocyanin extraction from purple fleshed potato, IFSET 17 (2013) 126-132.
120. Kokkali, M., Martí-Quijal, F. J., Taroncher, M., Ruiz, M. J., Kousoulaki, K. and Barba, F. J. - Improved extraction efficiency of antioxidant bioactive compounds from Tetraselmis chuii and Phaedoactylum tricornutum using pulsed electric fields, Molecules 25 (17) (2020) 3921.
121. Loypimai, P., Moongngarm, A., Chottanom, P. and Moontree, T. - Ohmic heating-assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant, IFSET 27 (2015) 102-110.
122. de Andrade Lima, L. M., da Silva, S. S. and de Oliveira, A. B. - Supercritical fluid extraction (SFE) of carotenoids from fruit and vegetable waste: A sustainable approach for the recovery of carotenoids, Food Res Int. 123 (2019) 579-589. https://doi.org/10.1016/j.foodres.2019.05.040.
123. Montero, O., Macías Sánchez, M. D., Lama, C. M., Lubián, L. M., Mantell, C., Rodríguez, M. and de la Ossa, E. M.- Supercritical CO2 extraction of carotenoids from marine cyanobacterium Synechococcus sp., Agric. Food Chem. 54 (9) (2006) 3213-3218.
124. Seabra, I. J., Braga, M. E. M., Batista, M. T. P. and de Sousa, H. C. - High pressure homogenization of elderberry pomace for anthocyanin extraction, Food Chem. 121 (3) (2010) 903-910.
125. Jun, S.- Enzyme-assisted extraction of carotenoids from tomato waste, J. Food Sci. 71 (7) (2006) C472-C476. https://doi.org/10.1111/j.1365-2621.2006.tb16037.x.
126. Strati, I., Katsanidis, E. and Koutinas, A. A. - Extraction of carotenoids from tomato waste: Process optimization using enzymes and high pressure, Food Bioprod. Process 93 (4) (2015) 375–381. https://doi.org/10.1016/j.fbp.2015.02.003.
127. Shahram, S. and Dinani, A. - Optimization of β-carotene extraction from orange processing waste using ultrasonication, Food Sci. & Nutrition 7 (4) (2019a) 1134-1143.
128. Uquiche, E. L., Antilaf, I. and Millao, S. - CO2 depressurization for enhanced extraction of carotenoids and chlorophyll from Botryococcus braunii, Bioresour. Technol. 202 (2016) 85-92.
129. Sachindra, N. M., Bhaskar, N., Siddegowda, G. S., Sathisha, A. D. and Suresh, P. V. - Fermentation of shrimp waste for carotenoid production: A comparative study, Journal of Food Sci. and Tech. 40 (2) (2007) 248-255.
130. Pennacchi, M. G., Rodríguez Fernández, D. E., Vendruscolo, F., Maranho, L. T., Marc, I., and Cardoso, L. A. C. - Bead milling for the extraction of carotenoids from Sporobolomyces ruberrimus, Food Bioprocess Technol. 8 (4) (2015) 860-866.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.
Funding data
-
Universiti Tun Hussein Onn Malaysia
Grant numbers H650