Copper oxide nanoparticles for photocatalytic and antibacterial applications: a review

Le Minh Huong, Le Tan Tai, Nguyen Hung Vu, Nguyen Thanh Hoai Nam, Nguyen Minh Dat, Nguyen Huu Hieu
Author affiliations

Authors

  • Le Minh Huong VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
  • Le Tan Tai Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
  • Nguyen Hung Vu Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
  • Nguyen Thanh Hoai Nam
  • Nguyen Minh Dat VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
  • Nguyen Huu Hieu VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/21269

Keywords:

copper oxide, photocatalytic, antibacterial, phyto-synthesis

Abstract

Copper oxide (CuO) is a well-known semiconductor material, which has been widely used in many different fields such as energy, environment, and medicine. The need for effective and feasible synthesis of a nanostructured CuO for various applications is an urge. Therefore,  the method for synthesizing CuO with different approaches is summarized in this review to shed light on the viable options for synthesizing this promising material. In addition, applications of CuO in various fields is discussed, in turn, the main application of CuO in the photodegradation of organic pollutants and antibacterial properties is presented in detail. Future perspectives are also given to mention and tackle the current and future challenges for the synthesis as well as the application of the material.

Downloads

Download data is not yet available.

References

Heinemann M., Eifert B., Heiliger C. - Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3, Phys. Rev. B Condens Matter Mater Phys. 87 (2013) 115111. https://doi.org/10.1103/PhysRevB.87.115111.

2. Sun Y. et al. - Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating, Sci Rep 7 (2017) 10727. https://doi.org/10.1038/s41598-17-11142-y.

3. Forsyth J. B., Hull S. - The effect of hydrostatic pressure on the ambient temperature structure of CuO, Journal of Physics: Condensed Matter 3 (1991) 5257-5261. https://doi.org/10.1088/0953-8984/3/28/001.

4. Sharma A. et al. - XANES, EXAFS and photocatalytic investigations on copper oxide nanoparticles and nanocomposites, RSC Adv 5 (2015) 21762-21771. https://doi.org/ 10.1039/C4RA16217J.

5. Vasantharaj S. et al. - Biosynthesis of copper oxide nanoparticles using Tecoma stans flower extract and its antibacterial, anticancer, and photocatalytic activities, Biocatal Agric Biotechnol 58 (2024) 103137. https://doi.org/10.1016/j.bcab.2024.103137.

6. Vinothkanna A., Mathivanan K., Ananth S., Ma Y., Sekar S. - Biosynthesis of copper oxide nanoparticles using Rubia cordifolia bark extract: characterization, antibacterial, antioxidant, larvicidal and photocatalytic activities, Environmental Science and Pollution Research 30 (2022) 42563-42574. https://doi.org/10.1007/s11356-022-18996-4.

7. Eid A. M. et al. - Plant-Based Copper Oxide Nanoparticles; Biosynthesis, Characterization, Antibacterial Activity, Tanning Wastewater Treatment, and Heavy Metals Sorption, Catalysts 13 (2023) 348. https://doi.org/10.3390/catal13020348.

8. Krishnan S., Haseeb A. S. M. A., Johan M. R. - Low dimensional CuO nanocomposites synthesis by pulsed wire explosion and their crystal growth mechanism, Ceram Int 40 (2014) 9907-9916. https://doi.org/10.1016/j.ceramint.2014.02.086.

9. Kumar R., Kumar K., Thakur N. - Biosynthesis of CuO/Cu2O-ZnO nanocomposites via Commelina benghalensis leaf extract and their antibacterial, photocatalytic and antioxidant assessment, Inorg Chem Commun 157 (2023) 111400. https://doi.org/ 10.1016/j.inoche.2023.111400.

10. Wang B., Wu X. L., Shu C. Y., Guo Y. G., Wang C. R. - Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries, J. Mater Chem 20 (2010) 10661. https://doi.org/10.1039/c0jm01941k.

11. Kidowaki H. et al. - Fabrication and Characterization of CuO-based Solar Cells, Journal of Materials Science Research 1 (2011). https://doi.org/10.5539/jmsr.v1n1p138.

12. Izzi M., Sportelli M. C., Torsi L., Picca R. A., Cioffi N. - Synthesis and Antimicrobial Applications of ZnO Nanostructures: A Review, ACS Appl Nano Mater 6 (2023) 10881-10902. https://doi.org/10.1021/acsanm.3c01432.

13. Walters A. C. et al. - Effect of covalent bonding on magnetism and the missing neutron intensity in copper oxide compounds, Nat. Phys. 5 (2009) 867-872. https://doi.org/ 10.1038/nphys1405.

14. Parmigiani F., Pacchioni G., Illas F., Bagus P. S. - Studies of the Cu2O bond in cupric oxide by X-ray photoelectron spectroscopy and ab initio electronic structure models, J Electron Spectros Relat Phenomena 59 (1992) 255-269. https://doi.org/10.1016/0368-2048(92)87005-7.

15. Aroussi S., Dahamni M. A., Ghamnia M., Tonneau D., Fauquet C. - Characterization of Some Physical and Photocatalytic Properties of CuO Nanofilms Synthesized by a Gentle Chemical Technique, Condens Matter 7 (2022) 37. https://doi.org/10.3390/ condmat7020037.

16. Katwal R., Kaur H., Sharma G., Naushad Mu., Pathania D. - Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity, Journal of Industrial and Engineering Chemistry 31 (2015) 173-184. https://doi.org/ 10.1016/j.jiec.2015.06.021.

17. Wang Y. et al. - Electronic structures of Cu2O,Cu4O3, and CuO: A joint experimental and theoretical study, Phys. Rev. B 94 (2016) 245418. https://doi.org/ 10.1103/PhysRevB.94.245418.

18. Karthik R., Harish Nagarajan R., Raja B., Damodharan P. - Thermal conductivity of CuO–DI water nanofluids using 3-ω measurement technique in a suspended micro-wire, Exp Therm Fluid Sci 40 (2012) 1-9. https://doi.org/10.1016/j.expthermflusci.2012.01.006.

19. Zhu M. et al. - Polarization dependent ferroelectric photovoltaic effects in BFTO/CuO thin films, Appl Phys Lett 111 (2017) 032901. https://doi.org/10.1063/1.4985563.

20. Pandiyarajan T., Udayabhaskar R., Vignesh S., James R. A., Karthikeyan B. - Synthesis and concentration dependent antibacterial activities of CuO nanoflakes, Materials Science and Engineering: C 33 (2013) 2020–2024. https://doi.org/10.1016/j.msec.2013.01.021.

21. Shiri L., Ghorbani-Choghamarani A., Kazemi M. - Sulfides Synthesis: Nanocatalysts in C–S Cross-Coupling Reactions, Aust. J. Chem. 69 (2016) 585. https://doi.org/ 10.1071/CH15528.

22. Chen C. et al. - Bionic superhydrophobic surfaces based on topography of copper oxides, Biosurf Biotribol 8 (2022) 199-211. https://doi.org/10.1049/bsb2.12045.

23. He H.-Y., Chen P. - Recent advances in property enhancement of nano TiO2 in photodegradation of organic pollutants, Chem Eng Commun 199 (2012) 1543-1574. https://doi.org/10.1080/00986445.2012.684415.

24. Zhang Q. et al. - CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Prog. Mater. Sci. 60 (2014) 208-337. https://doi.org/10.1016/j.pmatsci.2013.09.003.

25. Akintelu S. A., Folorunso A. S., Folorunso F. A., Oyebamiji A. K. - Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation, Heliyon 6 (2020) e04508. https://doi.org/10.1016/j.heliyon.2020.e04508.

26. Khashan K. S., Sulaiman G. M., Abdulameer F. A. - Synthesis and Antibacterial Activity of CuO Nanoparticles Suspension Induced by Laser Ablation in Liquid, Arab J. Sci. Eng. 41 (2016) 301-310. https://doi.org/10.1007/s13369-015-1733-7.

27. Zeng H. et al. - Nanomaterials via Laser Ablation/Irradiation in Liquid: A Review, Adv Funct Mater 22 (2012) 1333-1353. https://doi.org/10.1002/adfm.201102295.

28. Tiwari P. K. et al. - Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings, Ecotoxicol Environ Saf 176 (2019) 321-329. https://doi.org/10.1016/j.ecoenv.2019.01.120.

29. Svetlichnyi V. A., Shabalina A. V, Goncharova I. N. L. and D. A. - Metal Oxide Nanoparticle Preparation by Pulsed Laser Ablation of Metallic Targets in Liquid, in Applications of Laser Ablation (ed. Yang, D.) (IntechOpen, Rijeka, 2016). Ch. 11 doi:10.5772/65430. https://doi.org/10.5772/65430.

30. Yang L. et al. - One-step synthesis of CuO nanoparticles based on flame synthesis: As a highly effective non-enzymatic sensor for glucose, hydrogen peroxide and formaldehyde, Journal of Electroanalytical Chemistry 881 (2021) 114965. https://doi.org/10.1016/ j.jelechem.2020.114965.

31. Yuan X., Meng L., Xu Z., Zheng C., Zhao H. - CuO Quantum Dots Supported by SrTiO3 Perovskite Using the Flame Spray Pyrolysis Method: Enhanced Activity and Excellent Thermal Resistance for Catalytic Combustion of CO and CH4, Environ Sci. Technol 55 (2021) 14080-14086. https://doi.org/10.1021/acs.est.1c03639.

32. Chen Z., Xu Z., Zhao H. - Flame spray pyrolysis synthesis and H2S sensing properties of CuO-doped SnO2 nanoparticles, Proceedings of the Combustion Institute 38 (2021) 6743-6751. https://doi.org/https://doi.org/10.1016/j.proci.2020.06.315.

33. Xu K. et al. - Flame in situ synthesis of metal-anchored CuO nanowires for CO catalytic oxidation and kinetic analysis, ACS Appl Energy Mater 4 (2021) 13226–13238.

34. Choi S.-W., Park J. Y., Kim S. S. - Growth behavior and sensing properties of nanograins in CuO nanofibers, Chemical Engineering Journal 172 (2011) 550-556. https://doi.org/ 10.1016/j.cej.2011.05.100.

35. Alshafei F. H., Simonetti D. A. - Targeted morphology of copper oxide based electrospun nanofibers, Chem Eng Sci 219 (2020) 115547. https://doi.org/10.1016/j.ces.2020.115547.

36. Xue J., Wu T., Dai Y., Xia Y. - Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications, Chem Rev 119 (2019) 5298-5415. https://doi.org/ 10.1021/acs.chemrev.8b00593.

37. Alshafei F. H., Simonetti D. A. - Targeted morphology of copper oxide based electrospun nanofibers, Chem Eng Sci 219 (2020) 115547. https://doi.org/10.1016/j.ces.2020.115547.

38. Bognitzki M. et al. - Preparation of Sub-micrometer Copper Fibers via Electrospinning, Advanced Materials 18 (2006) 2384-2386. https://doi.org/10.1002/adma.200600103.

39. Jarlborg T. - Effects of spin–phonon interaction within the CuO plane of high-TC superconductors, Physica C Supercond 454 (2007) 5-14. https://doi.org/ 10.1016/j.physc.2006.12.019.

40. Rahman Md. K., Lee J. S., Kwon K. S. - Fine conductive line printing of high viscosity CuO ink using near field electrospinning (NFES), Sci Rep 13 (2023) 17668. https://doi.org/10.1038/s41598-023-45083-6.

41. Krishnan S., Haseeb A. S. M. A., Johan M. R. - One dimensional CuO nanocrystals synthesis by electrical explosion: A study on structural, optical and electronic properties, J. Alloys Compd 586 (2014) 360-367. https://doi.org/10.1016/j.jallcom.2013.10.014.

42. Krishnan S., Haseeb A. S. M. A., Johan M. R. - Synthesis and growth kinetics of spindly CuO nanocrystals via pulsed wire explosion in liquid medium, Journal of Nanoparticle Research 15 (2013) 1410. https://doi.org/10.1007/s11051-012-1410-7.

43. Park E., Park H. W., Lee J. - Synthesis of hierarchical copper oxide composites prepared via electrical explosion of the wire in liquids method, Colloids Surf A Physicochem Eng Asp 482 (2015) 710-717. https://doi.org/https://doi.org/10.1016/j.colsurfa.2015.07.029.

44. Zhang Q. et al. - CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Prog Mater Sci 60 (2014) 208-337. https://doi.org/10.1016/j.pmatsci.2013.09.003.

45. Zhang Q. et al. - CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Prog Mater Sci 60 (2014) 208-337. https://doi.org/10.1016/j.pmatsci.2013.09.003.

46. Pawar S. M., Patil S. S., Sonawane K. D., More V. B., Patil P. S. - Hydrothermally synthesized copper oxide nanoparticles: Rietveld analysis and antimicrobial studies, Surfaces and Interfaces 51 (2024) 104598. https://doi.org/10.1016/j.surfin.2024.104598.

47. Sonia S. et al. - Hydrothermal synthesis of highly stable CuO nanostructures for efficient photocatalytic degradation of organic dyes, Mater Sci Semicond Process 30 (2015) 585-591. https://doi.org/10.1016/j.mssp.2014.10.012.

48. İpeksaç T., Kaya F., Kaya C. - Template-free hydrothermal method for the synthesis of multi-walled CuO nanotubes, Mater Lett 130 (2014) 68-70. https://doi.org/ 10.1016/j.matlet.2014.05.059.

49. Liu L., Hong K., Hu T., Xu M. - Synthesis of aligned copper oxide nanorod arrays by a seed mediated hydrothermal method, J Alloys Compd 511 (2012) 195-197. https://doi.org/10.1016/j.jallcom.2011.09.028.

50. Gund G. S., Dubal D. P., Dhawale D. S., Shinde S. S., Lokhande C. D. - Porous CuO nanosheet clusters prepared by a surfactant assisted hydrothermal method for high performance supercapacitors, RSC Adv 3 (2013) 24099. https://doi.org/10.1039/ c3ra43254h.

51. Thanh N. T. K., Maclean N., Mahiddine S. - Mechanisms of Nucleation and Growth of Nanoparticles in Solution, Chem Rev 114 (2014) 7610-7630. https://doi.org/10.1021/ cr400544s.

52. Phiwdang K., Suphankij S., Mekprasart W., Pecharapa W. - Synthesis of CuO Nanoparticles by Precipitation Method Using Different Precursors, Energy Procedia 34 (2013) 740-745. https://doi.org/10.1016/j.egypro.2013.06.808.

53. Rajaeiyan A., Bagheri-Mohagheghi M. M. - Comparison of sol-gel and co-precipitation methods on the structural properties and phase transformation of γ and α-Al2O3 nanoparticles, Adv Manuf 1 (2013) 176-182. https://doi.org/10.1007/s40436-013-0018-1.

54. Dörner L. et al. - Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area, Sci Rep 9 (2019) 11758. https://doi.org/ 10.1038/s41598-019-48020-8.

55. Rahnama A., Gharagozlou M. - Preparation and properties of semiconductor CuO nanoparticles via a simple precipitation method at different reaction temperatures, Opt Quantum Electron 44 (2012) 313-322. https://doi.org/10.1007/s11082-011-9540-1.

56. Ali K. et al. - Synthesis of copper oxide (CuO) via coprecipitation method: Tailoring structural and optical properties of CuO nanoparticles for optoelectronic device applications, Hybrid Advances 6 (2024) 100250. https://doi.org/10.1016/ j.hybadv.2024.100250.

57. Patel M., Mishra S., Verma R., Shikha D. - Synthesis of ZnO and CuO nanoparticles via Sol gel method and its characterization by using various technique, Discov Mater 2 (2022) 1. https://doi.org/10.1007/s43939-022-00022-6.

58. Dörner L. et al. - Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area, Sci Rep 9 (2019) 11758. https://doi.org/ 10.1038/s41598-019-48020-8.

59. Yarbrough R., Davis K., Dawood S., Rathnayake H. - A sol–gel synthesis to prepare size and shape-controlled mesoporous nanostructures of binary (II–VI) metal oxides, RSC Adv 10 (2020) 14134-14146. https://doi.org/10.1039/D0RA01778G.

60. Parashar M., Shukla V. K., Singh R. - Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications, Journal of Materials Science: Materials in Electronics 31 (2020) 3729-3749. https://doi.org/10.1007/s10854-020-02994-8.

61. Jia W. et al. - From Cu2(OH)3Cl to nanostructured sisal-like Cu(OH)2 and CuO: Synthesis and characterization, J Appl Phys 105 (2009) 064917. https://doi.org/10.1063/ 1.3097286.

62. Huang H. et al. - Thin copper oxide nanowires/carbon nanotubes interpenetrating networks for lithium ion batteries, CrystEngComm 14 (2012) 7294. https://doi.org/ 10.1039/c2ce25873k.

63. Welegergs G. G. et al. - Electrodeposition of nanostructured copper oxide (CuO) coatings as spectrally solar selective absorber: Structural, optical and electrical properties, Infrared Phys Technol 133 (2023) 104820. https://doi.org/10.1016/j.infrared.2023.104820.

64. Deng M. J. et al. - Facile electrochemical synthesis of 3D nano-architectured CuO electrodes for high-performance supercapacitors, J. Mater. Chem. A 2 (2014) 12857-12865. https://doi.org/10.1039/C4TA02444C.

65. Jadhav S., Gaikwad S., Nimse M., Rajbhoj A. - Copper Oxide Nanoparticles: Synthesis, Characterization and Their Antibacterial Activity, J Clust Sci 22 (2011) 121-129. https://doi.org/10.1007/s10876-011-0349-7.

66. Saif S., Tahir A., Asim T., Chen Y. - Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia magna, Nanomaterials 6 (2016) 205. https://doi.org/10.3390/nano6110205.

67. Nasrollahzadeh M., Maham M., Mohammad Sajadi S. - Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N -monosubstituted ureas and reduction of 4-nitrophenol, J. Colloid Interface Sci 455 (2015) 245-253. https://doi.org/10.1016/j.jcis.2015.05.045.

68. Zikalala N., Matshetshe K., Parani S., Oluwafemi O. S. - Biosynthesis protocols for colloidal metal oxide nanoparticles, Nano-Structures & Nano-Objects 16 (2018) 288-299. https://doi.org/10.1016/j.nanoso.2018.07.010.

69. Jeevanandam J., Chan Y. S., Danquah M. K. - Biosynthesis of Metal and Metal Oxide Nanoparticles, ChemBioEng Reviews 3 (2016) 55-67. https://doi.org/ 10.1002/cben.201500018.

70. Ghasemi N., Jamali-Sheini F., Zekavati R. - CuO and Ag/CuO nanoparticles: Biosynthesis and antibacterial properties, Mater. Lett. 196 (2017) 78-82. https://doi.org/ 10.1016/j.matlet.2017.02.111.

71. Rahman A., Ismail A., Jumbianti D., Magdalena S., Sudrajat H. - Synthesis of copper oxide nano particles by using Phormidium cyanobacterium, Indonesian Journal of Chemistry 9 (2010) 355-360. https://doi.org/10.22146/ijc.21498.

72. Saif Hasan S. et al. - Bacterial Synthesis of Copper/Copper Oxide Nanoparticles, J. Nanosci Nanotechnol 8 (2008) 3191-3196. https://doi.org/10.1166/jnn.2008.095.

73. Zhao H. et al. - Biological synthesis of copper oxide nanoparticles using marine endophytic actinomycetes and evaluation of biofilm producing bacteria and A549 lung cancer cells, J. King Saud Univ Sci. 34 (2022) 101866. https://doi.org/10.1016/ j.jksus.2022.101866.

74. Veisi H. et al. - Biosynthesis of CuO nanoparticles using aqueous extract of herbal tea (Stachys Lavandulifolia) flowers and evaluation of its catalytic activity, Sci. Rep. 11 (2021) 1983. https://doi.org/10.1038/s41598-021-81320-6.

75. Keabadile O. P., Aremu A. O., Elugoke S. E., Fayemi O. E. - Green and Traditional Synthesis of Copper Oxide Nanoparticles-Comparative Study, Nanomaterials 10 (2020) 2502. https://doi.org/10.3390/nano10122502.

76. Prakash S. et al. - Green synthesis of copper oxide nanoparticles and its effective applications in Biginelli reaction, BTB photodegradation and antibacterial activity, Advanced Powder Technology 29 (2018) 3315-3326. https://doi.org/10.1016/ j.apt.2018.09.009.

77. K. V., S. S., P. M., S. M., S. S. - Ecofriendly green synthesis, characterization and biomedical applications of CuO nanoparticles synthesized using leaf extract of Capsicum frutescens, J. Environ Chem. Eng. 9 (2021) 106299. https://doi.org/ 10.1016/j.jece.2021.106299.

78. Selvanathan V. et al. - Muntingia calabura Leaves Mediated Green Synthesis of CuO Nanorods: Exploiting Phytochemicals for Unique Morphology, Materials 14 (2021) 6379. https://doi.org/10.3390/ma14216379.

79. Bin Mobarak M., Hossain Md. S., Chowdhury F., Ahmed S. - Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters, Arabian Journal of Chemistry 15 (2022) 104117. https://doi.org/10.1016/j.arabjc.2022.104117.

80. Nandisha P. S., Sowbhagya - Bio-mediated synthesis of CuO nano bundles from Gomutra (cow urine): Synthesis, characterization, photodegradation of the malachite green dye and SBH mediated reduction of 4-nitrophenol, Materials Science and Engineering: B 295 (2023) 116607. https://doi.org/10.1016/j.mseb.2023.116607.

81. Dabhane H. et al. - A novel approach toward the bio-inspired synthesis of CuO nanoparticles for phenol degradation and antimicrobial applications, Biomass Convers Biorefin 14 (2024) 17235-17250. https://doi.org/10.1007/s13399-023-03954-y.

82. Ali K. et al. - Synthesis of copper oxide (CuO) via coprecipitation method: Tailoring structural and optical properties of CuO nanoparticles for optoelectronic device applications, Hybrid Advances 6 (2024) 100250. https://doi.org/10.1016/ j.hybadv.2024.100250.

83. Huong L. M. et al. - Non-metallic X (X = C, N, S, and P) co-doped copper oxide derived from Mangifera indica leaf extract: Synthesis, characterization, density functional theory simulation of structure, and photoactivities, Colloids Surf A Physicochem Eng Asp 687 (2024) 133393. https://doi.org/10.1016/j.colsurfa.2024.133393.

84. Parrino F., Livraghi S., Giamello E., Ceccato R., Palmisano L. - Role of Hydroxyl, Superoxide, and Nitrate Radicals on the Fate of Bromide Ions in Photocatalytic TiO2 Suspensions, ACS Catal 10 (2020) 7922-7931. https://doi.org/10.1021/acscatal.0c02010.

85. Saha H. et al. - Photocatalytic performance of CuO NPs: An experimental approach for process parameter optimization for Rh B dye, Results in Materials 24 (2024) 100614. https://doi.org/10.1016/j.rinma.2024.100614.

86. Li T. et al. - Synthesis of doped and porous CuO with boosted light-harvesting features for the photocatalytic mineralization of azo dyes, Ceram Int 49 (2023) 27827-27836. https://doi.org/10.1016/j.ceramint.2023.05.272.

87. Bano K. et al. - Fabrication of CuO/ZnO heterojunction photocatalyst for efficient photocatalytic degradation of tetracycline and ciprofloxacin under direct sun light, Environ Nanotechnol Monit Manag 20 (2023) 100863. https://doi.org/10.1016/ j.enmm.2023.100863.

88. Herrmann J.-M. - Photocatalysis fundamentals revisited to avoid several misconceptions, Appl Catal B 99 (2010) 461-468. https://doi.org/10.1016/j.apcatb.2010.05.012.

89. Dizaj S. M., Lotfipour F., Barzegar-Jalali M., Zarrintan M. H., Adibkia K. - Antimicrobial activity of the metals and metal oxide nanoparticles, Materials Science and Engineering: C 44 (2014) 278-284. https://doi.org/10.1016/j.msec.2014.08.031.

90. Abebe B., Zereffa E. A., Tadesse A., Murthy H. C. A. - A Review on Enhancing the Antibacterial Activity of ZnO: Mechanisms and Microscopic Investigation, Nanoscale Res Lett 15 (2020) 190. https://doi.org/10.1186/s11671-020-03418-6.

91. Khatoon U. T., Velidandi A., Nageswara Rao G. V. S. - Copper oxide nanoparticles: Synthesis via chemical reduction, characterization, antibacterial activity, and possible mechanism involved, Inorg Chem Commun 149 (2023) 110372. https://doi.org/10.1016/j.inoche.2022.110372.

92. Kim T. et al. - Cupric ion in combination with hydrogen peroxide and hydroxylamine applied to inactivation of different microorganisms, J. Hazard Mater 400 (2020) 123305. https://doi.org/10.1016/j.jhazmat.2020.123305.

93. Karim Md. N. et al. - Visible-Light-Triggered Reactive-Oxygen-Species-Mediated Antibacterial Activity of Peroxidase-Mimic CuO Nanorods, ACS Appl Nano Mater 1 (2018) 1694-1704. https://doi.org/10.1021/acsanm.8b00153.

94. Rajkumar S. et al. - One-Pot Green Recovery of Copper Oxide nanoparticles from Discarded Printed Circuit Boards for electrode material in Supercapacitor Application, Resour Conserv Recycl 180 (2022) 106180. https://doi.org/10.1016/j.resconrec. 2022.106180.

95. Ameri B., Davarani S. S. H., Roshani R., Moazami H. R., Tadjarodi A. - A flexible mechanochemical route for the synthesis of copper oxide nanorods/nanoparticles/nanowires for supercapacitor applications: The effect of morphology on the charge storage ability, J Alloys Compd 695 (2017) 114-123. https://doi.org/10.1016/j.jallcom.2016.10.144.

96. Sackey J. et al. - Electrochemical properties of Euphorbia pulcherrima mediated copper oxide nanoparticles, Mater Chem Phys 244 (2020) 122714. https://doi.org/ 10.1016/j.matchemphys.2020.122714.

97. Murphin Kumar P. S. et al. - Green route synthesis of nanoporous copper oxide for efficient supercapacitor and capacitive deionization performances, Int J Energy Res 44 (2020) 10682–10694. https://doi.org/10.1002/er.5712.

98. Ravichandran S., Radhakrishnan J., Sengodan P., Rajendran R. - Biosynthesis of copper oxide nanoparticle from clerodendrum phlomidis and their decoration with graphene oxide for photocatalytic and supercapacitor application, Journal of Materials Science: Materials in Electronics 33 (2022) 9403-9411. https://doi.org/10.1007/s10854-021-07340-0.

99. Talluri B., Ghosh S., Rao G. R., Thomas T. - Nanocomposites of digestively ripened copper oxide quantum dots and graphene oxide as a binder free battery-like supercapacitor electrode material, Electrochim Acta 321 (2019) 134709. https://doi.org/10.1016/ j.electacta.2019.134709.

100. Bhaumik A. et al. - Copper oxide based nanostructures for improved solar cell efficiency, Thin Solid Films 572 (2014) 126-133. https://doi.org/10.1016/j.tsf.2014.09.056.

101. Wanninayake A. P., Gunashekar S., Li S., Church B. C., Abu-Zahra N. - Performance enhancement of polymer solar cells using copper oxide nanoparticles, Semicond Sci Technol 30 (2015) 064004. https://doi.org/10.1088/0268-1242/30/6/064004.

102. Wanninayake A. P., Gunashekar S., Li S., Church B. C., Abu-Zahra N. - Performance enhancement of polymer solar cells using copper oxide nanoparticles, Semicond Sci Technol 30 (2015) 064004. https://doi.org/10.1088/0268-1242/30/6/064004.

103. Siddiqui H., Parra M. R., Pandey P., Qureshi M. S., Haque F. Z. - Utility of copper oxide nanoparticles (CuO-NPs) as efficient electron donor material in bulk-heterojunction solar cells with enhanced power conversion efficiency, Journal of Science: Advanced Materials and Devices 5 (2020) 104-110. https://doi.org/10.1016/j.jsamd.2020.01.004.

104. Sharma J. K., Akhtar M. S., Ameen S., Srivastava P., Singh G. - Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications, J. Alloys Compd. 632 (2015) 321-325. https://doi.org/10.1016/ j.jallcom.2015.01.172.

105. Singh J., Kumar V., Kim K. H., Rawat M. - Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes, Environ Res. 177 (2019) 108569. https://doi.org/10.1016/ j.envres.2019.108569.

106. Chen W. T., Jovic V., Sun-Waterhouse D., Idriss H., Waterhouse G. I. N. - The role of CuO in promoting photocatalytic hydrogen production over TiO2, Int. J. Hydrogen Energy 38 (2013) 15036-15048. https://doi.org/10.1016/j.ijhydene.2013.09.101.

107. Kum J. M., Yoo S. H., Ali G., Cho S. O. - Photocatalytic hydrogen production over CuO and TiO2 nanoparticles mixture, Int J Hydrogen Energy 38 (2013) 13541-13546. https://doi.org/10.1016/j.ijhydene.2013.08.004.

Downloads

Published

28-08-2025

How to Cite

[1]
Le Minh Huong, Le Tan Tai, Nguyen Hung Vu, Nguyen Thanh Hoai Nam, Nguyen Minh Dat, and N. Hữu Hiếu, “Copper oxide nanoparticles for photocatalytic and antibacterial applications: a review”, Vietnam J. Sci. Technol., vol. 63, no. 4, pp. 655–678, Aug. 2025.

Issue

Section

Review

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.