FABRICATION AND CHARACTERIZATION OF THE MECHANICAL PROPERTIES OF COPPER MATRIX COMPOSITE REINFORCED BY GRAPHENE – CARBON NANOTUBE HYBRID MATERIALS

Author affiliations

Authors

  • Doan Dinh Phuong Institute of Materials Science, Vietnam Academy of Science and Technology https://orcid.org/0000-0001-5544-1848
  • Tran Bao Trung Institute of Materials Science, Vietnam Academy of Science and Technology https://orcid.org/0000-0001-5263-4097
  • Phan Ngoc Minh Graduate University of Science and Technology, Vietnam Academy of Science and Technology
  • Pham Van Trinh Institute of Materials Science, Vietnam Academy of Science and Technology https://orcid.org/0000-0001-7905-3647

DOI:

https://doi.org/10.15625/2525-2518/22153

Keywords:

Graphene, Carbon nanotubes, copper composites, microstructure, mechanical properties, Wear Resistance

Abstract

In this work, graphene-carbon nanotube/copper (Gr-CNT/Cu) composites were fabricated by using spark plasma sintering (SPS) technique. The effect of Gr-CNT hybrid material on the microstructure, mechanical properties and wear behavior of the composites was investigated. The obtained result showed that the Gr-CNT hybrid material was uniformly dispersed on the surface of Cu particles. The relative density of the fabricated Gr-CNT/Cu composite was higher 98%. The composite exhibited enhanced hardness and tensile strength relative to pure copper. The enhancement in hardness and tensile strength was attributed to the incorporation of Gr-CNT hybrid material. Furthermore, the friction coefficient and wear rate of the composite decreased by 43% and 50%, respectively, in comparison to pure Cu. The reduction in the friction coefficient of the composite indicated the excellent wear resistance of the Gr-CNT hybrid material within the Cu matrix.

Downloads

Download data is not yet available.

References

1. Bai X., Wang D., Zhen L., et al. – Micromanufacturing of composite materials: a review. International Journal of Extreme Manufacturing, 1 (2019) 012004. doi.org/10.1088/2631-7990/AB0F74.

2. Mortensen A., Llorca J. – Metal matrix composites. Annual Review of Materials Research, 40 (2010) 243–270. doi.org/10.1146/ANNUREV-MATSCI-070909-104511/CITE/REFWORKS.

3. Parikh V. K., Patel V., Pandya D. P., Andersson J. – Current status on manufacturing routes to produce metal matrix composites: State-of-the-art. Heliyon, 9 (2023) e13558. doi.org/10.1016/J.HELIYON.2023.E13558.

4. Sharma S. K., Saxena K. K., Salem K. H., Mohammed K. A., Singh R., Prakash C. – Effects of various fabrication techniques on the mechanical characteristics of metal matrix composites: a review. Advances in Materials and Processing Technologies, 10 (2024) 277–294. doi.org/10.1080/2374068X.2022.2144276.

5. Yoo S. C., Lee D., Ryu S. W., Kang B., Ryu H. J., Hong S. H. – Recent progress in low-dimensional nanomaterials filled multifunctional metal matrix nanocomposites. Progress in Materials Science, 132 (2023) 101034. doi.org/10.1016/J.PMATSCI.2022.101034.

6. Qin Y. –Q, Tian Y., Peng Y. –Q, et al. – Research status and development trend of preparation technology of ceramic particle dispersion strengthened copper-matrix composites. Journal of Alloys and Compounds, 848 (2020) 156475. doi.org/10.1016/J.JALLCOM.2020.156475.

7. Jamwal A., Mittal P., Agrawal R., et al. – Towards sustainable copper matrix composites: Manufacturing routes with structural, mechanical, electrical and corrosion behaviour. https://doi.org/101177/0021998319900655, 54 (2020) 2635–2649. doi.org/10.1177/0021998319900655.

8. Somani N., Sharma N., Sharma A., Gautam Y. K., Khatri P., Solomon J. A. A. – Fabrication of Cu-SiC Composites using Powder Metallurgy Technique. Materials Today: Proceedings, 5 (2018) 28136–28141. doi.org/10.1016/J.MATPR.2018.10.055.

9. Somani N., Gupta N. K. – Effect of TiC nanoparticles on microstructural and tribological properties of Cu-TiC nano-composites. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 236 (2022) 319–336. doi.org/10.1177/09544054211029828.

10. Trinh P. Van, Luan N. Van, Phuong D. D., Minh P. N. – Mirostructure and microhardness of aluminum-copper composite reinforced with multi-walled carbon nanotubes prepared by vacuum sintering and hot isostatic pressing techniques. Science of Sintering, 50 (2018) 163–171. doi.org/10.2298/SOS1802163T.

11. Phuong D. D., Van Trinh P., Minh P. N., Shtertser A. A., Ulianitsky V. Y. – Effect of Powder Preparation Techniques on Microstructure, Mechanical Properties, and Wear Behaviors of Graphene-Reinforced Copper Matrix Composites. Crystals 2024, Vol 14, Page 1000, 14 (2024) 1000. doi.org/10.3390/CRYST14111000.

12. Van Duong L., Anh N. N., Trung T. B., et al. – Effect of annealing temperature on electrical and thermal property of cold-rolled multi-walled carbon nanotubes reinforced copper composites. Diamond and Related Materials, 108 (2020) 107980. doi.org/10.1016/J.DIAMOND.2020.107980.

13. Van Hau T., Van Trinh P., Van Tu N., et al. – Electrodeposited nickel–graphene nanocomposite coating: influence of graphene nanoplatelet size on wear and corrosion resistance. Applied Nanoscience (Switzerland), 11 (2021) 1481–1490. doi.org/10.1007/S13204-021-01780-0/FIGURES/11.

14. Li Z., Zhao L., Guo Q., et al. – Enhanced dislocation obstruction in nanolaminated graphene/Cu composite as revealed by stress relaxation experiments. Scripta Materialia, 131 (2017) 67–71. doi.org/10.1016/J.SCRIPTAMAT.2017.01.015.

15. Chu K., Wang X. hu, Li Y. biao, et al. – Thermal properties of graphene/metal composites with aligned graphene. Materials & Design, 140 (2018) 85–94. doi.org/10.1016/J.MATDES.2017.11.048.

16. Hidalgo-Manrique P., Lei X., Xu R., Zhou M., Kinloch I. A., Young R. J. – Copper/graphene composites: a review. Journal of Materials Science, 54 (2019) 12236–12289. doi.org/10.1007/S10853-019-03703-5/FIGURES/41.

17. Zhang L., Duan Z., Zhu H., Yin K. – Advances in synthesizing copper/graphene composite material. Materials and Manufacturing Processes, 32 (2017) 475–479. doi.org/10.1080/10426914.2016.1198036.

18. Janas D., Liszka B. – Copper matrix nanocomposites based on carbon nanotubes or graphene. Materials Chemistry Frontiers, 2 (2017) 22–35. doi.org/10.1039/C7QM00316A.

19. Song G., Sun L., Li S., Sun Y., Fu Q., Pan C. – Synergistic effect of Gr and CNTs on preparing ultrathin Cu-(CNTs+Gr) composite foil via electrodeposition. Composites Part B: Engineering, 187 (2020) 107841. doi.org/10.1016/J.COMPOSITESB.2020.107841.

20. Zarei F., Sheibani S. – Comparative study on carbon nanotube and graphene reinforced Cu matrix nanocomposites for thermal management applications. Diamond and Related Materials, 113 (2021) 108273. doi.org/10.1016/J.DIAMOND.2021.108273.

21. Chen X., Tao J., Yi J., Liu Y., Li C., Bao R. – Strengthening behavior of carbon nanotube-graphene hybrids in copper matrix composites. Materials Science and Engineering: A, 718 (2018) 427–436. doi.org/10.1016/J.MSEA.2018.02.006.

22. Zhao Q., Gan X., Zhou K. – Enhanced properties of carbon nanotube-graphite hybrid-reinforced Cu matrix composites via optimization of the preparation technology and interface structure. Powder Technology, 355 (2019) 408–416. doi.org/10.1016/J.POWTEC.2019.07.055.

23. Cao J., Yang Q., Zhou L., et al. – Microstructure, properties and synergetic effect of graphene oxide-functionalized carbon nanotubes hybrid reinforced copper matrix composites prepared by DC electrodeposition. Carbon, 212 (2023) 118157. doi.org/10.1016/J.CARBON.2023.118157.

24. Chen X., Tao J., Liu Y., et al. – Interface interaction and synergistic strengthening behavior in pure copper matrix composites reinforced with functionalized carbon nanotube-graphene hybrids. Carbon, 146 (2019) 736–755. doi.org/10.1016/J.CARBON.2019.02.048.

25. Van Hau T., Van Trinh P., Hoai Nam N. P., et al. – Electrodeposited nickel–graphene nanocomposite coating: effect of graphene nanoplatelet size on its microstructure and hardness. RSC Advances, 10 (2020) 22080–22090. doi.org/10.1039/D0RA03776A.

26. Van Duong L., Van Luan N., Ngoc Anh N., et al. – Enhanced mechanical properties and wear resistance of cold-rolled carbon nanotubes reinforced copper matrix composites. Materials Research Express, 7 (2020) 015069. doi.org/10.1088/2053-1591/AB69C1.

27. Zhang S., Huang P., Wang F. – Graphene-boundary strengthening mechanism in Cu/graphene nanocomposites: A molecular dynamics simulation. Materials & Design, 190 (2020) 108555. doi.org/10.1016/J.MATDES.2020.108555.

28. Wang Y., Cheng H., Sun B., et al. – Enhanced electrical and mechanical properties of graphene/copper composite through reduced graphene oxide-assisted coating. Journal of Materials Research and Technology, 33 (2024) 8121–8131. doi.org/10.1016/J.JMRT.2024.11.162.

29. Yu J., Wang L., Shao B., Zong Y. – The role of graphene interlayer slipping on the deformation behavior of graphene/copper composite. Journal of Alloys and Compounds, 988 (2024) 174142. doi.org/10.1016/J.JALLCOM.2024.174142.

30. Xu Y., Zhou P., Chen Q., et al. – The effect of copper particles coated with graphene oxide on tribological properties and tribo-layers of copper metal matrix composites. Tribology International, 199 (2024) 110041. doi.org/10.1016/J.TRIBOINT.2024.110041

Downloads

Published

10-06-2025

How to Cite

[1]
D. Dinh Phuong, T. Bao Trung, P. Ngoc Minh, and P. Van Trinh, “FABRICATION AND CHARACTERIZATION OF THE MECHANICAL PROPERTIES OF COPPER MATRIX COMPOSITE REINFORCED BY GRAPHENE – CARBON NANOTUBE HYBRID MATERIALS”, Vietnam J. Sci. Technol., vol. 63, no. 5, Jun. 2025.

Issue

Section

Materials

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

You may also start an advanced similarity search for this article.