Green synthesis of graphene quantum dots from rice flour
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16847Keywords:
graphene quantum dots (GQDs), photocatalyst, hydrothermal method, microwave irradiation method, rice flour, Classification numbers: 1.3.3, 2.5.1, 2.1.1.Abstract
Graphene Quantum Dots (GQDs) were successfully synthesized by a green and eco-friendly synthetic method using abundant and naturally available raw materials from rice flour. This study suggested and compared two aggressive approaches to fabricate GQDs, which are hydrothermal method at 170 °C for 8 h and microwave irradiation method at 900 W with a short reaction time of 30 min. The results showed that the hydrothermal method produced GQDs with better nanoparticle size and properties than the microwave irradiation method. Furthermore, the products were only GQDs, water and carbide precipitate, thus avoiding complicated post-processing steps. The synthesized GQDs were determined for their morphology by Transmission electron microscope (TEM) showing spherical nanoparticles with an average size of ~5-7 nm and ~10-14 nm for hydrothermal and microwave irradiation methods, respectively. Besides, these GQDs were also analyzed for their characterizations, morphologies and compositions by UV-vis, XRD and FTIR. Thanks to their low cytotoxicity, good optical stability, and excellent photo-luminescence property, GQDs have become novel nanostructured materials in many application fields from energy to biomedicine and environment such as sensors, bio-imaging, drug carriers, and solar cells.Downloads
References
Girit C. O., Meyer J. C., Erni R., Rossell M. D., Kisielowski C., Yang L., Park C. H.,Crommie M. F., Cohen M. L. and Louie S. G., et al. - Graphene at the edge:stability and dynamics, Sci. 323 (5922) (2009) 1705-1708. https://doi.org/10.1126/science.1166999.
Ritter K. A., Lyding J. W. and Mater N. - The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8 (3) (2009) 235-242. https://doi.org/10.1038/nmat2378.
Shen J., Zhu Y., Yang X., Li. C. and Commun C. - Graphenequantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices, ChemComm. 48 (31) (2012) 3686-3699. https://doi.org/10.1002/chin.201229273.
Hassan M., Haque E., Reddy K. R., Minett A. I., Chen J. and Gomes V. G. - Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance, Phys. Sci. Math. 6 (20) (2014) 11988–11994. https://doi.org/10.1039/C4NR02365J.
Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V. and Firsov A. A. - Electric field effect in atomically thin carbon films, Sci. 306 (5696) (2004) 666-669. https://www.science.org/doi/10.1126/science.1102896.
Geim A. K. - Graphene: status and prospects, Sci. 324 (5934) (2009) 1530-1534. https://www.science.org/doi/10.1126/science.1158877.
Bolotin K. I., Sikes K. J., Jiang Z., Klimac M., Fudenberga G., Honec J., Kima P. and Stormer H. L. - Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (9-10) (2008) 351-355. https://doi.org/10.1016/j.ssc.2008.02.024.
Lee C., Wei X. and Kysar J. W. - Measurement of the elastic properties and intrinsic strength of monolayergraphene, Sci. 321 (5887) (2008) 385-388. https://doi/10.1126/science.1157996.
Xu X. Z., Zhou J.,Jestin. J., Colombo V. andLubineau. G. - Preparation ofwater-soluble graphenenanoplatelets and highly conductivefilms, Carbon. 124 (2017) 133-141. https://doi.org/10.1016/j.carbon.2017.08.007.
Du L., Luo X., Zhao F., Zhang J., Peng Y., Tang Y. and Wang Y. - Toward facile broadband highphotoresponse of fullerene based phototransistor from theultraviolet to the near-infrared region, Carbon. 96 (2016) 685–694. https://doi.org/10.1016/j.carbon.2015.10.005.
Witek A. and Irle S. - Diversity in electronic structure and vibrational properties of fullerene isomers correlates with cage curvature, Carbon. 100 (2016) 484-491. http://dx.doi.org/10.1126/science.1157996.
Qiu C., Zhang Z., Xiao M.,Yang Y., Zhong D. and Peng L. M. - Scaling carbon nanotube complementary transistors to 5nm gate lengths, Sci. 355 (6322) (2017) 271-276. https://www.science.org/doi/10.1126/science.aaj16.
Zhang S.,Kang L.,Wang X.,Tong L. and Yang L. - Arrays of horizontalcarbon nanotubes of controlled chirality grown using designedcatalysts, Nat. 543 (2017) 234-238. https://doi.org/10.1038/nature21051.
Liu Y.,Wang S.,Liu H. and Peng L. M. - Carbon nanotube based three-dimensional monolithic optoelectronic integrated system, Nat. Comm. 8 (1) (2017) 1-8. https://doi.org/10.1038/ncomms15649.
Strano M. S., Lu T. K, Dong J.,Yang D.,Chio L. and Kottadiel V. L. - Single molecule detection of protein efflux from microorganismsusing fluorescent single walled carbon nanotube sensorarrays, Nat. Nanotechnol. 12 (4) (2017) 368-377. https://doi.org/10.1038/nnano.2016.284.
Liu R.,Wu D., Feng X. and Mullen K. - Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology, J. Am. Chem. Soc. 133 (39) (2011) 15221-15223.
https://doi.org/10.1021/ja204953k.
Choi S. H - Unique properties of graphene quantum dots andtheir applications in photonic/electronic devices, J. Phys. D: Appl. Phys. 50 (10) (2011) 103002. http://iopscience.iop.org/0022-3727/50/10/103002.
Ma M. J., Hu X. Y. and Zhang C. B. - The optimum parameters to synthesize bright and stable graphene quantum dots by hydrothermal method, J. Mater. Sci. Mater. Electron. 28 (9) (2017) 6493–6497. https://doi.org/10.1007/s10854-017-6337-4.
Tang L.L., JiR., Cao X., Lin J., Jiang H., Li X., Teng K. S., Luk C. M., Zeng S. and Lau S. P., et al. - Deep ultraviolet photoluminescence of water soluble self-passivatedgraphene quantum dots, ACS Nano. 6 (6) (2012) 5102-5110. https://doi.org/10.1021/nn300760g.
Zhuo S., Shao M. and Lee S. T. - Up conversion and down conversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis, ACS Nano. 6 (2) (2012) 1059-1064. https://doi.org/10.1021/nn2040395.
Pedro C., Ignacio G., Luis Y., Zaera R. T., Cabanero G., Grande H. J. and Ruiz V. - Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection, Carbon. 109 (2016) 658-665. https://doi.org/10.1016/j.carbon.2016.08.038.
Zhu S., Zhang J., Tang S., Qiao C., Wang L., Wang H., Liu X., Li B., Yu W. and Wang X., et al. - Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications, Adv. Funct. Mater. 22 (22) (2012) 4732-4740. https://doi.org/10.1002/adfm.201201499.
Zhang M., Bai L, Shang W., Xie W., Ma H., Fu Y, Fang D., Sun H., Fan L. and Han M., et al. - Facile synthesis of water soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells, J. Mater. Chem. 22 (15) (2012) 7461-7467. https://doi.org/10.1039/C2JM16835A.
Kuo W. S., Chen H. H., Chen S. Y., Chang C. Y., Chen P. C., Hou Y. I., Shao Y. T., Kao H. F., Hsu C. L. L. and Chen Y. C., et al. - Graphene quantum dots with nitrogen doped content dependence for highly efficient dual modality photodynamic antimicrobial therapy and bioimaging, Biomaterials. 120 (2017) 185-194. https://doi.org/10.1016/j.biomaterials.2016.12.022.
Jiang D., Chen YP. Y., Li N., Li W., Wang Z., Zhu J., Zhang H. and Liu B. - Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study, PLoS One. 10 (12) (2015) 1–15. https://doi.org/10.1371/journal.pone.0144906.
Lin L. and Zhang S. - Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes, ChemComm. 48 (82) (2012) 10177-10179.https://doi.org/10.1039/C2CC35559K.
Kumar G. S., Thupakula U., Sarkar P. K. and Acharya S. - Easy extraction of water soluble graphene quantum dots for light emitting diodes, RSC Adv. 5 (35) (2015) 27711-27716. https://doi.org/10.1039/C5RA90055G.
Weifeng C., Guo L., Weimin H., Dejiang L., Shaona C. and Zhongxu D. - Synthesis and applications ofgraphenequantumdots: a review, Nanotechnol. Rev. 7 (2) (2018) 157-185. https://doi.org/10.1515/ntrev-2017-0199.
Bacon M., Siobhan J. B. and Thomas N. - Graphene quantum dots, Part. Part. Syst. Charact. 31 (4) (2013) 415-428. https://doi.org/10.1002/ppsc.201300252.
Bourlinos A. B., Stassinopoulos A., Anglos D., Zboril R., Karakassides M. and Giannelis E. P. - Surface functionalized carbogenic quantum dots, Small. 4 (4) (2008) 455–458. https://doi.org/10.1002/smll.200700578.
Qian Z., Ma J., Shan X., Shao L., Zhou J., Chen J. and Feng H. - Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation, RSC Adv. 3 (34) (2013) 1457-14579. https://doi.org/10.1039/C3RA42066C.
Weifeng C., Dejiang L., Li T., Wei X., Tianyuan W., Weimin H., Yulin H., Shaona C., Jianfeng C. and Zhongxu D. - Synthesis of graphenequanum dots from natural polymer starch for cell imaging, Green Chem. 20 (19) (2018) 4438-4442. https://doi.org/10.1039/C8GC02106F.
Gan Y.X., Jayatissa A.H., Yu Z., Chen X. and Li M. - Hydrothermal synthesis of nanomaterials, J. Nanomater. 2020 (2020) 1-3.
https://doi.org/10.1155/2020/8917013
Dunne P.W., Starkey C.L., Gimeno F.M. and Lester E.H. - The rapid size-and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials, Nanoscale 6 (4) (2014) 2406-2418. doi:10.1039/C3NR05749F.
Ma M., Hu X., Zhang C., Deng C. and Wang X. - The optimum parameters to synthesize bright and stable graphene quantum dots by hydrothermal method, J. Mater. Sci. Mater. Electron. 28 (9) (2017) 6493-6497. DOI:10.1007/s10854-017-6337-4.
Luo P., Qiu Y., Guan X. and Jiang L. - Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment, Phys. Chem. Chem. Phys. 16 (35) (2014) 19011-19016. https://doi.org/10.1039/C4CP02652G.
Li L.L., Ji J., Fei R., Wang C.Z., Lu Q., Zhang J.R., Jiang L.P. and Zhu J.J. - A facile microwave avenue to electrochemiluminescent two‐color graphene quantum dots, Adv. Funct. Mater. 22 (14) (2012) 2971-2979. https://doi.org/10.1002/adfm.201200166.
Onwudiwe D. C. - Microwave-assisted synthesis of PbS nanostructures, Heliyon 5 (3) (2019) e01413. https://doi.org/10.1016/j.heliyon.2019.e01413.
Zhu H.T., Zhang C.Y. and Yin Y.S. - Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation, J. Cryst. Growth 270 (3-4) (2004) 722-728. DOI: 10.1016/j.jcrysgro.2004.07.008.
Yan X., Li B., Cui X., Wei Q., Tajima K. and Li L. S. - Independent tuning of the band gap and redoxpotential of graphenequantumdots, J. Phys. Chem. Lett. 2 (10) (2011) 1119-1124. https://doi.org/10.1021/jz200450r.
Behzadi F., Saievar I. E. and Bayat A. - One step synthesis of graphene quantum dots, graphene nanosheets and carbon nanospheres: investigation of photoluminescence properties, Mater. Res. Express. 6 (10) (2019) 105615. https://doi.org/10.1088/2053-1591/ab3dd5.
Pedro C. M., Ignacio G., Luis Y., Ramon Z. T., German C., Hans G. J. and Virginia R. - Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection, Carbon. 109 (2016) 658-665. https://doi.org/10.1016/j.carbon.2016.08.038.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.