The effect of fabrication conditions on optical characteristics of CQDs prepared by micro plasma

Pham Van Duong, Do Hoang Tung, Pham Hong Minh, Doan Thi Kieu Oanh, Nguyen Thanh Binh
Author affiliations

Authors

  • Pham Van Duong Institute of Physics, Vietnam Academy of Science and Technology, No. 10 Dao Tan, Giang Vo, Ha Noi, Viet Nam
  • Do Hoang Tung Institute of Physics, Vietnam Academy of Science and Technology, No. 10 Dao Tan, Giang Vo, Ha Noi, Viet Nam
  • Pham Hong Minh Institute of Physics, Vietnam Academy of Science and Technology, No. 10 Dao Tan, Giang Vo, Ha Noi, Viet Nam
  • Doan Thi Kieu Oanh Institute of Physics, Vietnam Academy of Science and Technology, No. 10 Dao Tan, Giang Vo, Ha Noi, Viet Nam
  • Nguyen Thanh Binh Institute of Physics, Vietnam Academy of Science and Technology, No. 10 Dao Tan, Giang Vo, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/18033

Keywords:

Nano carbon quantum dots, solution-interaction microplasma method

Abstract

Carbon quantum dots (CQDs) are emerging nanomaterials with outstanding advantages such as non-toxicity, high biocompatibility, and abundant functional groups, making them highly suitable for biological and optoelectronic applications. In this study, CQDs were synthesized using a solution-interaction microplasma method operated at atmospheric pressure. The obtained CQDs exhibit spherical morphology with particle sizes below 10 nm and demonstrate excitation-dependent fluorescence over the 350 - 650 nm wavelength range. The effects of fabrication parameters-including plasma electrode polarization, precursor concentration, and preparation time-on the optical properties of CQDs were systematically investigated. Variations in these conditions resulted in changes in fluorescence intensity, spectral width, and emission peak position, reflecting the strong dependence of optical behavior on surface states and structural features. The results confirm that microplasma synthesis enables effective tuning of CQD optical properties, providing insights into exciton self-trapped emission (EST) and supporting the development of environmentally friendly CQD-based fluorescent materials for potential display and sensing applications.

Downloads

Download data is not yet available.

References

1. Hao S. L., Il J., Rong X., Seungju S., Jin-Wook L., Chao L., Amrita P., Sergei M., Mark S. G., Yang Y., Shigeo M., Yutaka M. - Achieving high efficiency in solution-processed perovskite solar cells using C60/C70 mixed fullerenes, ACS Appl. Mater. Interfaces 10 (2018) 39590-39598. doi.org/10.1021/acsami.8b11049.

2. Adam J. C., Mustafa K. B., Stephen A. H., Neal T. S., Christopher A. H., and Milo S. P. S. - Charged carbon nanomaterials: Redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118 (2018) 7363-7408. doi.org/10.1021/acs.chemrev. 8b00128.

3. Vasilios G., Jason A. P., Jiri T., Radek Z. - Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115 (2015) 4744-4822. doi.org/10.1021/cr500304f.

4. Xiaoyou X., Robert R., Yunlong G., Harry J. P., Latha G., Kyle R. and Walter A. S. - Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Chem. Soc. 126 (2004) 12736-12737. doi.org/10.1021/ja040082h.

5. Xunzhi H., Yongsheng L., Xiaoxia Z., Amanda E. R., Kostya (Ken) O. - Fast microplasma synthesis of blue luminescent carbon quantum dots at ambient conditions. Plasma Process. Polym. 12 (2015) 59-65. doi.org/10.1002/ppap.201400133.

6. Chuang H., Peng X., Xuanhan Z., Wujian L. - The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective. Carbon 186 (2022) 91-127. doi.org/10.1016/j.carbon.2021.10.002.

7. J. Zheng, Y. Wang, F. Zhang, Y. Yang, X. Liu, K. Guo, H. Wang, B. Xu. - Microwave-assisted hydrothermal synthesis of solid-state carbon dots with intensive emission for white light-emitting devices. J. Mater. Chem. C 32 (2017) 8105-8111. doi.org/10.1039/C7TC01701D.

8. Chong Q., Huaidong W., Ailing Y., Xiaoxu W. and Jie X. - Facile fabrication of highly fluorescent n-doped carbon quantum dots using an ultrasonic-assisted hydrothermal method: optical properties and cell imaging. ACS Omega 6 (2021) 32904-32916. doi.org/10.1021/acsomega.1c04903.

9. Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M. E. Kose, B. Chen, L.M. Veca, S. Y. Xie. - Quantum-sized carbon dots for bright and colorful photoluminescence, J. Am. Chem. Soc. 24 (2006) 7756-7757. doi: 10.1021/ja062677d.

10. Y. Li, X. Zhong, A. E. Rider, S. A. Furman, K. Ostrikov. - Fast, energy-efficient synthesis of luminescent carbon quantum dots, Green Chem. 16(5) (2014) 2566-2570. doi: 10.1039/c3gc42562b.

11. Athanasios B. B., Georgios T., Michael A. K., Maria B., Antonios K., Dimitrios G., Aristides B., Katerina H., Ondrej K., Radek Z., Irene P., Panagiotis A., Stelios C. - Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties, Carbon 83 (2015) 173-179. doi.org/10.1016/j.carbon.2014.11.032

12. R. Y. Li, X. Wang, Z. J. Li, H. Y. Zhu, J. K. Li. - Folic acid-functionalized graphene quantum dots with tunable fluorescence emission for cancer cell imaging and optical detection of Hg2+, New J. Chem. 42 (2018) 4352–4360. doi.org/10.1039/C7NJ05052F.

13. Do H. T., Tran T. T., Nguyen D. C., Nguyen T. L., Nguyen V. K., Le H. M., Pham H. M., Nguyen T. T. T., Nguyen M. H., Nguyen V. P. - Facile synthesis of carbon quantum dots by plasma-liquid interaction method, Communications in Physics 27 (2017) 311-316. doi.org/10.15625/0868-3166/27/4/10867.

14. Lin L. X., Zhang S. W. - Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. 48 (2012) 10177-10179. doi.org/10.1039/C2CC35559K.

15. Vikas K. S., Virendra S., Pradeep K. Y., Subhash C., Daraksha B., Vijay K., Biplob K., Mahe T. and Syed H. H. - Bright-blue-emission nitrogen and phosphorus doped carbon quantum dots as a promising nanoprobe for detection of Cr(VI) and ascorbic acid in pure aqueous solution and in living cell. New J. Chem. 42 (2018) 12990-12997. doi.org/10.1039/C8NJ02126K.

16. Ju T., Jin Z., Yunfei Z., Yiming X., Yanli S., Yunhua C., Lan D., Wen X. - Influence of group modification at the edges of carbon quantum dots on fluorescent emission. Nanoscale Research Letters, 14 (2019) 241. doi.org/10.1186/s11671-019-3079-7.

17. Fanglong Y., Ting Y., Laizhi S., Zhibin W., Zifan X., Yunchao L., Xiaohong L., Louzhen F., Zhan’ao T., Anmin C., Mingxing J., Shihe Y. - Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Communications, 9 (2018) 2249. doi: 10.1038/s41467-018-04635-5.

18. Shoujun Z., Yubin S., Xiaohuan Z., Jieren S., Junhu Z., Bai Y. - The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Research, 8 (2015) 375-381. doi.org/10.1007/s12274-014-0644-3.

19. P. V. Duong, N. M. Hoa, L. D. Toan, P. T. Chuyen, N. T. T. Hien, P. H. Minh, N. T. Binh and L. A. Thi. - Plasma-assisted green fabrication of fluorescent carbon quantum dot-silver nanocomposites. Journal of Dispersion Science and Technology, 46 (2025) 1356-1364. https://doi.org/10.1080/01932691.2024.2440422

P. V. Duong, L. A. Thi, L. D. Toan, P. H. Minh, N.T. Binh, D. H. Tung, N. D. Lam and N. M. Hoa. - Size-Dependent Optical Properties and Exciton Self Trapping Emission in Carbon Quantum Dots. ChemistrySelect, 9 (2024) e202401754 (1 of 7). Doi.org/10.1002/slct.202401754.

Downloads

Published

12-12-2025

How to Cite

[1]
D. Pham Van, T. Do Hoang, M. Pham Hong, K. A. Doan Thi, and N. T. Binh, “The effect of fabrication conditions on optical characteristics of CQDs prepared by micro plasma”, Vietnam J. Sci. Technol., vol. 63, no. 6, pp. 1107–1116, Dec. 2025.

Issue

Section

Materials

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 > >> 

You may also start an advanced similarity search for this article.