Study on solidified material from dredged sediment, fly ash, and blended Portland cement using the response surface method

Author affiliations

Authors

  • Thai Tien Dat Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0002-5906-6683
  • Huynh Ngoc Minh Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0002-2565-4129
  • Luu Tuyen Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam https://orcid.org/0009-0002-9960-8077
  • Kieu Do Trung Kien Vietnam National University Ho Chi Minh City, Linh Xuan Ward, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0001-8297-7832
  • Nguyen Vu Uyen Nhi 2Vietnam National University Ho Chi Minh City, Linh Xuan Ward, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0002-6504-8377
  • Do Quang Minh Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam https://orcid.org/0009-0005-7448-0101

DOI:

https://doi.org/10.15625/2525-2518/18519

Keywords:

dredged sediment, response surface methodology, solidification, hydrothermal, tobermorite, multi-objective optimization

Abstract

Treating dredged sediment is a complex processing and ongoing challenge. To utilize dredged sediment for the landfill or construction purposes, a material fabricated from a mixture of dredged sediment, Portland cement, and fly ash, was cured under room temperature and hydrothermal condition at 180 °C and 0.9 MPa pressure for 16 hours. The response surface methodology was used to evaluate the compressive strength of the material, with the range of factors investigated being the dredged sediments/solid ratio (0.3-0.9), cement/fly ash ratio (2-4), and water/solid ratio (0.45-0.55). The fitting models offered an accurate and reliable match to the actual data. The optimum mix proportions of two curing conditions were obtained using total desirability function, meet multi-objective criteria. This result finger out hydrothermal curing significantly enhances treatment capacity of dredged sediment, with a lower CO2 emission in the mixture compared to ambient curing. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to figure out the difference between the minerals formed in the material under two curing conditions, such as tobermorite.

Downloads

Download data is not yet available.

References

1. CapillaX., Schwartz C., Bedell J.P., Sterckeman T., Perrodin Y., andMorel J.L. -Physicochemical and biological characterisation of different dredged sediment deposit sites in France, Environ.Pollut. 143 (2006) 106-116. https://doi.org/10.1016/j.envpol.2005.11.007.

2. Wang D., Abriak N. E., and Zentar R. -Strength and deformation properties of Dunkirk marine sediments solidified with cement, lime and fly ash, Eng. Geol. 166 (2013) 90-99. https://doi.org/10.1016/j.enggeo.2013.09.007.

3. Vinh V. D., Hai N. M., and Lan T. D. -Proposal for appropriate solutions to reduce influences of sediment dumping activities in the Hai Phong open waters, Vietnam J. Mar. Sci. Technol. 19 (2019) 199-213. https://doi.org/10.15625/1859-3097/19/2/12567.

4. Akcil A., Erust C., Ozdemiroglu S., Fonti V., and Beolchini F. -A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes, J. Clean. Prod. 86 (2015) 24-36. https://doi.org/10.1016/j.jclepro.2014.08.009.

5. Barjoveanu G., De Gisi S., Casale R., Todaro F., Notarnicola M., and Teodosiu C. -A life cycle assessment study on the stabilization/solidification treatment processes for contaminated marine sediments, J. Clean. Prod. 201 (2018) 391-402. https://doi.org/10.1016/j.jclepro.2018.08.053.

6. Zhang W., Chen Y., Zhao L., and Chen L. -Mechanical behavior and constitutive relationship of mud with cement and fly ash, Constr. Build. Mater. 150 (2017) 426-434. https://doi.org/10.1016/j.conbuildmat.2017.05.163.

7. Zentar R., Wang H., and Wang D. -Comparative study of stabilization/solidification of dredged sediments with ordinary Portland cement and calcium sulfo-aluminate cement in the framework of valorization in road construction material, Constr. Build. Mater.279(2021)122-447.https://doi.org/10.1016/j.conbuildmat.2021.122447.

8. Todaro F., DeGisi S.,andNotarnicola M.-Contaminated marine sediment stabilization/solidification treatment with cement/lime: leaching behaviour investigation, Environ. Sci. Pollut. R. 27 (2020) 21407-21415.https://doi.org/10.1007/s11356-020-085621.

9. Kolias S., Kasselouri-Rigopoulou V., and Karahalios A. -Stabilisation of clayey soils with high calcium fly ash and cement, Cem. Concr. Compos. 27 (2005) 301-313. https://doi.org/10.1016/j.cemconcomp.2004.02.019.

10. Nu N. T., Son B. T., and Hai P. V.-Utilisation of ground granulated blast furnace slag (GGBFS) for soft soil improvement by deep mixing method, J. Min. Earth Sci. 61 (2020) 92-100. https://doi.org/10.46326/JMES.2020.61(1).10.

11. Wang L., Tsang D. C. W., and Poon C.-S. -Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification, Chemosphere 122 (2015) 257-264. https://doi.org/10.1016/j.chemosphere.2014.11.071.

12. Wang L., Yeung T. L. K., Lau A. Y. T., Tsang D. C. W., and Poon C.S. -Recycling contaminated sediment into eco-friendly paving blocks by a combination of binary cement and carbon dioxide curing, J. Clean. Prod. 164 (2017) 1279-1288. https://doi.org/10.1016/j.jclepro.2017.07.070.

13. Ramme B. W. -ACI 229R-99: Controlled Low-Strength Materials, American Concrete Institue (1999), pp. 1-15.

14. Yin B., Kang T., Kang J., Chen Y., Wu L., and Du M. -Investigation of the hydration kinetics and microstructure formation mechanism of fresh fly ash cemented filling materials based on hydration heat and volume resistivity characteristics, Appl. Clay Sci. 166 (2018) 146-158. https://doi.org/10.1016/j.clay.2018.09.019.

15. Zhang K., Wei Q., Jiang S., Shen Z., Zhang Y., Tang R., Yang A. and W. K. Chow C. -Utilization of Dredged River Sediment in Preparing Autoclaved Aerated Concrete Blocks, J. Renew. Mater., 10 (2022) 2989-3008.https://doi.org/10.32604/jrm.2022.019821.

16. Ribeiro D., Néri R. and Cardoso R. -Influence of Water Content in the UCS of Soil-Cement Mixtures for Different Cement Dosages, Procedia Eng., 143 (2016) 59-66. https://doi.org/10.1016/j.proeng.2016.06.008.

17. Consoli N. C., Rosa D. A., Cruz R. C., and Rosa A. D. -Water content, porosity and cement content as parameters controlling strength of artificially cemented silty soil, Eng. Geol. 122 (2011) 328-333. https://doi.org/10.1016/j.enggeo.2011.05.017.

18. Furlan A. P., Razakamanantsoa A., Ranaivomanana H., Amiri O., Levacher D., and Deneele D. -Effect of fly ash on microstructural and resistance characteristics of dredged sediment stabilized with lime and cement, Constr. Build. Mater. 272 (2021) 121637. https://doi.org/10.1016/j.conbuildmat.2020.121637.

19. Jamsawang P., Charoensil S., Namjan T., Jongpradist P., and Likitlersuang S. -Mechanical and microstructural properties of dredged sediments treated with cement and fly ash for use as road materials, Road Mater. Pavement 22 (2021) 2498-2522. https://doi.org/10.1080/14680629.2020.1772349.

20. Yoobanpot N., Jamsawang P., Simarat P., Jongpradist P., and Likitlersuang S. -Sustainable reuse of dredged sediments as pavement materials by cement and fly ash stabilization, Journal of Soils and Sediments 20 (2020) 3807-3823. https://doi.org/10.1007/s11368-020-02635-x.

21. Nguyen P. B. and Dao D. T. A. -Optimization of enzymatic hydrolysis conditions for increasing the efficiency of dry matter extracted from Limonia acidissima pulp by combined cellulase -pectinase enzymes using response surface methodology, Vietnam J. Sci. Technol. 55 (2017) 15. https://doi.org/10.15625/0866-708X/55/1/7472.

22. Ahmad M. and Rashid K. -Novel approach to synthesize clay-based geopolymer brick: Optimizing molding pressure and precursors’ proportioning, Constr. Build. Mater. 322 (2022) 126472. https://doi.org/10.1016/j.conbuildmat.2022.126472.

23. Li S., Wang D., Tang C., and Chen Y. -Optimization of synergy between cement, slag, and phosphogypsum for marine soft clay solidification, Constr. Build. Mater. 374 (2023) 130902. https://doi.org/10.1016/j.conbuildmat.2023.130902.

24. Srinivasa A. S., Swaminathan K. and Yaragal S. C. -Microstructural and optimization studies on novel one-part geopolymer pastes by Box-Behnken response surface design method, Case Stud. Constr. Mater. 18 (2023) e01946. https://doi.org/10.1016/j.cscm.2023.e01946.

25. Sridharan A., Prashanth J. P., and Sivapullaiah P. V. -Effect of fly ash on the unconfined compressive strength of black cotton soil, Proceedings of the Institution of Civil Engineers - Ground Improvement,Vol. 4,pp.169-175. https://doi.org/10.1680/gi.1997.010304.

26. Bui T. S., Nguyen T. N., and Nguyen T. D. -An Experimental Study on Unconfined Compressive Strength of Soft Soil-Cement Mixtures with or without GGBFS in the Coastal Area of Vietnam, Adv. Civ. Eng. 2020 (2020) 1-12. https://doi.org/10.1155/2020/7243704.

27. Pham V.N., Oh E., and Ong D. E. L. -Effects of binder types and other significant variables on the unconfined compressive strength of chemical-stabilized clayey soil using gene-expression programming, Neural Comput. Appl. 34 (2022) 9103-9121. https://doi.org/10.1007/s00521-022-06931-0.

28. Kockal N. U. and Ozturan T. -Optimization of properties of fly ash aggregates for high-strength lightweight concrete production, Mater. Des. 32 (2011) 3586-3593. https://doi.org/10.1016/j.matdes.2011.02.028.

29. Shi X., Zhang C., Wang X., Zhang T. and Wang Q. -Response surface methodology for multi-objective optimization of fly ash-GGBS based geopolymer mortar, Constr. Build. Mater., 315 (2022) 125644. https://doi.org/10.1016/j.conbuildmat.2021.125644.

30. Ebrahimzade I., Ebrahimi-Nik M., Rohani A., and Tedesco S. -Higher energy conversion efficiency in anaerobic degradation of bioplastic by response surface methodology, J. Clean. Prod. 290 (2021) 125840. https://doi.org/10.1016/j.jclepro.2021.125840.

31. Bhairappanavar S., Liu R., and Shakoor A. -Eco-friendly dredged material-cement bricks, Constr. Build. Mater. 271 (2021) 121524. https://doi.org/10.1016/j.conbuildmat.2020.121524.

32. Siam City Cement (Viet Nam) Ltd., INSEE Sustainable Development Report 2020-2021 Vietnam, 2022, https://static.insee.com.vn/SUSTAINABLE_DEVELOPMENT_REPORT _2020_2021..pdf (accessed 02 July 2023).

33. Hammond G., Jones C., Lowrie F., and Tse P. -Embodied carbon: the Inventory of Carbon and Energy (ICE), BSRIA, Bracknell, 2011.

34. Skibsted J. and Hall C. -Characterization of cement minerals, cements and their reaction products at the atomic and nano scale, Cem. Concr. Res. 38 (2008) 205-225. https://doi.org/10.1016/j.cemconres.2007.09.010.

35. Allen A. J., Thomas J. J., and Jennings H. M. -Composition and density of nanoscale calcium–silicate–hydrate in cement, Nat. Mater. 6 (2007) 311-316. https://doi.org/10.1038/nmat1871.

36. Galvánková L., Másilko J., Solný T., and Štěpánková E. -Tobermorite Synthesis Under Hydrothermal Conditions, Procedia Eng. 151 (2016) 100-107. https://doi.org/10.1016/j.proeng.2016.07.394.

37. Lothenbach B., Jansen D., Yan Y., and Schreiner J. -Solubility and characterization of synthesized 11 Å Al-tobermorite, Cem. Concr. Res. 159 (2022) 106871. https://doi.org/10.1016/j.cemconres.2022.106871.

38. Mostafa N. Y., Shaltout A. A., Omar H., and Abo-El-Enein S. A. -Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1nm tobermorites, J. Alloys Compd. 467 (2009) 332-337. https://doi.org/10.1016/j.jallcom.2007.11.130.

39. Liang X., Wang C., Zhan J., Cui X., and Ren Z. -Study on preparation of eco-friendly autoclaved aerated concrete from low silicon and high iron ore tailings, J. New Mater. Electrochem. Syst. 22 (2019) 224-230. https://doi.org/10.14447/jnmes.v22i4.a08.

Downloads

Published

24-07-2024

How to Cite

[1]
T.-D. Thai, N. M. Huynh, T. Luu, K. Kieu Do Trung, N. Nguyen Vu Uyen, and M. Do Quang, “Study on solidified material from dredged sediment, fly ash, and blended Portland cement using the response surface method”, Vietnam J. Sci. Technol., vol. 63, no. 5, pp. 934–946, Jul. 2024.

Issue

Section

Materials

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 > >> 

You may also start an advanced similarity search for this article.