Rutin exhibits an anti-resorptive effect in a medaka fish model of osteoporosis

Author affiliations

Authors

DOI:

https://doi.org/10.15625/2525-2518/18785

Keywords:

medaka fish, osteoporosis, 1-deoxynojirimicin, phospholipid class, rutin

Abstract

With the increasing prevalence of osteoporosis worldwide due to the aging population, there is a substantial need for the search and development of new anti-osteoporosis substances. Rutin (quercetin-3-O-rhamnosyl glucoside) is a flavonoid glycoside found in many plants and herbal medicines, known for its potent antioxidant and potential osteoprotective properties. In this study we investigated the anti-osteoporotic effects of rutin, for the first time, using a medaka fish (Oryzias latipes) model for osteoporosis. The medaka fish model is a non-mammalian model that is increasingly preferred for drug screening. Rankl-induced osteoporosis fish larvae were treated with rutin at five different doses (10, 25, 50, 100, and 200 µM) for 96 hours starting from 7 days post-fertilization (dpf). The effect of rutin on bone damage was assessed via indexes of mineralization protection (IP) which are based on the index of bone mineralization (IM) of the tested fish. The results showed that rutin significantly reduced the level of Rankl-induced bone damage at concentrations of 10, 25, 50, and 100 µM, with the highest effect observed at a concentration of 10 µM. These findings provide important evidence for further studies on the bone-protective effects of rutin on medaka fish models for the development of anti-osteoporosis drugs.

Downloads

Download data is not yet available.

References

1. Al-Bari A. A. and Mamun A. A. - Current advances in regulation of bone homeostasis. FASEB Bioadv., 2 (2020) 668-679. https://doi.org/10.1096/fba.2020-00058.

2. https://www.osteoporosis.foundation/educational-hub/topic/osteoporosis.(accessed 25 June 2023).

3. Khosla S. and Hofbauer, L. C. - Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endo, 5 (2017) 898-907. https://doi.org/10.1016/S2213-8587(17)30188-2

4. Hoang D. K., Doan M. C., Mai L. D., Ho-Le T. P. and Ho-Pham L. T. - Burden of osteoporosis in Vietnam: An analysis of population risk. PLoS One, 16(6) (2021) e0252592. https://doi.org/10.1371/journal.pone.0252592.

5. Tu K. N., Lie. J. D., Wan C. K. V., Cameron M., Austel A. G., Nguyen J. K., Van K. and Hyun D. - Osteoporosis: A review of treatment options. P T., 43 (2018) 92-104. PMCID:PMC5768298.

6. Sharpe M., Boble S. and Spencer C. M. - Alendronate: an update of its use in osteoporosis. Drugs, 61 (2001) 999-1039. https://doi.org/10.2165/00003495-200161070-00010.

7. Boyce B. F. and Xing, L. (2007) - The RANKL/RANK/OPG pathway. Curr. Osteoporos. Rep., 5 (2007) 98-104. https://doi.org/10.1007/s11914-007-0024-y.

8. Cheng C. H. C. L. and Chen K. H. - Osteoporosis due to hormone imbalance: An overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int. J. Mol. Sci., 23 (2022) 1376. https://doi.org/10.3390/ijms23031376.

9. Lleras-Forero L., Winkler C. and Schulte-Merker S. - Zebrafish and medaka as models for biomedical research of bone diseases. Dev. Biol., 457 (2020) 191-205. https://doi.org/:10.1016/j.ydbio.2019.07.009.

10. To T. T., Witten P. E., Renn J., Bhattacharya D., Huysseune A. and Winkler C. - Rankl-induced osteoclastogenesis leads to loss of mineralization in a medaka osteoporosis model. Development, 139 (2012) 141-150. https://doi.org/10.1242/dev.071035.

11. Cuong P. V., Thanh P. T., Hoa N. T., Long T. D. and Thuy T. T. - Segregation of rankl:HSE:CFP medaka transgenic fish line for use as osteoporosis models. VNU JS:NST, 31 (2015) 24-34.

12. Thuy L. T., Thanh P. T., Cuong P. V. C., Long T. D. L. and Thuy T. T. - Stability of the transgene rankl in the RANKL:HSE:CFP transgenic medaka fish used as a model for osteoporosis. Vietnam J. Physiol., 19 (2015) 10-17.

13. Cuong P. V., Thanh P. T. , Thuy L. T., Dat T. C., Huong N. V. M., Tam H. T. T. M., Thuong P. T. T., Long T. D., Winkler C. and Thuy T. T. - Icariin reduces bone loss in a Rankl-induced transgenic medaka (Oryzias latipes) model for osteoporosis. J. Fish Biol., 98 (2021) 1039-1048. https://doi.org/10.1111/jfb.14241.

14. Martiniakova M. B. M., Mondockova V., Blahova J., Kovacova V. and Omelka R. - The role of macronutrients, micronutrients and flavonoid polyphenols in the prevention and treatment of osteoporosis. Nutrients, 14 (3) (2022) 523. https://doi.org/10.3390/nu14030523.

15. Paniwnyk L. E. B., Lorimer J. P. and Mason T. J. - The extraction of rutin from flower buds of Sophora japonica. Ultrason. Sonochem., 8 (2001) 299-301. https://doi.org/10.1016/s1350-4177(00)00075-4.

16. Patel K. and Patel. D. K. - Chapter 26 - The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update, in: Watson R. R. and Preedy V. R. (Eds), Bioactive food as dietary interventions for arthritis and related inflammatory disease 2nd edition, Academic Press, 2019, 457-479.

17. Lee H. -H., Jang J. W., Lee, J. -K. and Park C. K.- Rutin improves bone histomorphometric values by reduction of osteoclastic activity in osteoporosis mouse model induced by bilateral ovariectomy. J. Korean Neurosurg. Soc., 63 (2020) 433. https://doi.org/10.3340/jkns.2019.0097.

18. Kyung T. W., Lee J. E., Shin H. H. and Choi H. S. - Rutin inhibits osteoclast formation by decreasing reactive oxygen species and TNF-alpha by inhibiting activation of NF-kappaB. Exp. Mol. Med., 40 (2008) 52-58. https://doi.org/10.3858/emm.2008.40.1.52.

19. Xiao Y., Wei R., Zhen Y., Lan X., Kuang J., Hu D., Song Y. and Luo J. - Rutin suppresses FNDC1 expression in bone marrow mesenchymal stem cells to inhibit postmenopausal osteoporosis. Am. J. Transl. Res., 11 (2019) 6680-6690. PMCID:PMC6834492.

20. Dung N. T., Long M. T. and Cuong B. H. - Flavonoid and lignan compounds isolated from underground parts of the plant Podophylum tonkinense Gagnep. collected in Sapa, Lao Cai. Vietnam Pharm. J., 507 (2018) 48-53.

21. Walker M. B. and Kimmel C. B. - A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotech. Histochem., 82 (2007) 23-28. https://doi.org/10.1080/10520290701333558.

22. Chaturvedi P., Binhui Z., Zimmerman D. L., and Belmont A. S.- Stable and reproducible transgene expression independent of proliferative or differentiated state using BAC TG-EMBED. Gene Ther., 25 (2018) 376-391. https://doi.org/10.1038/s41434-018-0021-z.

23. Hyun H. H. P., Jeong J., Kim J., Kim H., Oh H. I., Hwang H. S., and Kim H. H. - Effects of watercress containing rutin and rutin alone on the proliferation and osteogenic differentiation of human osteoblast-like MG-63 cells. Korean J. Physiol. Pharmacol., 18 (2014) 347-352. https://doi.org/10.4196/kjpp.2014.18.4.347.

24. Hosseinzadeh H. and Nassiri-Asl M. - Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J. Endocrinol. Invest., 37 (2014) 783-788. https://doi.org/10.1007/s40618-014-0096-3.

25. Srivastava S., Rohini. B. and Partha. R. - Assessment of the role of flavonoids for inducing osteoblast differentiation in isolated mouse bone marrow derived mesenchymal stem cells. Phytomedicine, 20 (2013) 683-690. https://doi.org/10.1016/j.phymed.2013.03.001.

26. Pickrell J. A.- Chapter 28 - Radiation and Health Effects, in: Gupta R. C. (Ed), Handbook of Toxicology of Chemical Warfare Agents, Academic Press, 2009, pp.381-392.

27. de Witte W. E. A., Danhof M. and van der Graaf P.H. - The implications of target saturation for the use of drug–target residence time. Nat. Rev. Drug Discov., 18 (2019) 84. https://doi.org/10.1038/nrd.2018.234.

28. Liu X. -W., Ma B., Zi Y., Xiang L. -B. and Han T. -Y. - Effects of rutin on osteoblast MC3T3-E1 differentiation, ALP activity and Runx2 protein expression. Eur. J. Histochem., 65 (2021) 3195. https://doi.org/10.4081/ejh.2021.3195.

29. To T. T., Witten P.-E., Huysseune A. and Winkler C. - An adult osteopetrosis model in medaka reveals the importance of osteoclast function for bone remodeling in teleost fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 178 (2015) 68-75. https://doi.org/10.1016/j.cbpc.2015.08.007

30. Renn J. B. A., To T. T., Chan S. J. H. and Winkler C. - A col10a1:nlGFP transgenic line displays putative osteoblast precursors at the medaka notochordal sheath prior to mineralization. Dev. Biol., 381 (2013) 134-143. doi:10.1016/j.ydbio.2013.05.030.

31. Gera S. P. V., Godugu C., Swamy-Challa V., Wankar J., Dodoala S. and Sampathi S. - Rutin nanosuspension for potential management of osteoporosis: effect of particle size reduction on oral bioavailability, in vitro and in vivo activity. Pharm. Dev. Technol., 25 (2020) 971-988. doi:10.1080/10837450.2020.1765378.

32. Morikane D., Zang L. and Nishimura N. - Evaluation of the percutaneous absorption of drug molecules in zebrafish. Molecules, 25 (2020) 3974. doi:10.3390/molecules25173974.

33. Zhang F., Qin W., Zhang P. and Hu Q. - Antibiotic toxicity and absorption in zebrafish using liquid chromatography-tandem mass spectrometry. Plos One, 10 (2015) e0124805. doi:10.1371/journal.pone.0124805.

34. Yang C. Y., Hsiu S. L., Wen K. C., Lin S.P., Tsai S. Y., Hou Y. C. and Chao P. D. L. - Bioavailability and metabolic pharmacokinetics of rutin and quercetin in rats. J. Food Drug Anal., 13 (2005). doi:10.38212/2224-6614.2517.

Downloads

Published

01-08-2025

How to Cite

[1]
T. T. To, T. B. D. Nguyen, T. A. Nguyen, H. M. Nguyen, and T. T. Phuong, “Rutin exhibits an anti-resorptive effect in a medaka fish model of osteoporosis”, Vietnam J. Sci. Technol., vol. 63, no. 5, Aug. 2025.

Issue

Section

Natural Products

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.