Application of composite based on magnetite oxide to remove the ofloxacin from aqueous solution

Bui Minh Quy, Tran Tuan Tu, Vu Thi Thu Le, Vu Quang Tung, Nguyen Thi Quynh Giang, Hoang Van Quang
Author affiliations

Authors

DOI:

https://doi.org/10.15625/2525-2518/19096

Keywords:

Chitosan, magnetite, antibiotic, ofloxacin, adsorption

Abstract

In this research, Chitosan-Fe3O4 composite materials (CS-MNPs) were successfully synthesized using chemical processes. XRD, SEM, TEM, and VSM techniques were employed to analyze the characteristics of the material. To remove the antibiotic ofloxacin (OFX) from aqueous solutions, CS-MNPs were used as an adsorbent. The effects of pH, contact time, initial concentration, and the presence of another antibiotic (ciprofloxacin) in the solution were investigated to evaluate the ability of OFX to adsorb. The experimental data were analyzed using adsorption models, including kinetic models (pseudo-first-order, pseudo-second-order, and Elovich models), isotherm adsorption models (Langmuir, Freundlich, and Temkin models), and the Langmuir competitive adsorption model. After five adsorption-desorption cycles, the material showed high reusability, with an OFX removal efficiency of 50.16%.

Downloads

Download data is not yet available.

References

1. Kulik K., Lenart-Boroń A., and Wyrzykowska K. - Impact of Antibiotic Pollution on the Bacterial Population within Surface Water with Special Focus on Mountain Rivers, Water 15 (5) (2023) 975. doi: 10.3390/w15050975.

2. Bird K., Boopathy R., Nathaniel R., and LaFleur G. - Water pollution and observation of acquired antibiotic resistance in Bayou Lafourche, a major drinking water source in Southeast Louisiana, USA. Environ. Sci. Pollut. Res. 26 (33) (2019) 34220-34232. doi: 10.1007/s11356-018-4008-5.

3. Binh V. N., et al. - Investigation of antibiotics in health care wastewater in Ho Chi Minh City, Vietnam. Sci. Total Environ 692 (7) (2021) 157-174. doi: 10.1007/s10661-016-5704-6.

4. Anh H. Q., et al. - Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives, Sci. Total Environ. 764 (2021) 142865. doi:10.1016/J.SCITOTENV. 2020.142865.

5. Al-Omar M. A. - Ofloxacin Profiles of Drug Substances, Excipients and Related Methodology Academic Press 34 (2009) 265-298. doi:10.1016/S1871-5125(09)34006-6

6. Salamatinia B. A. P. - A Short Review on Presence of Pharmaceuticals in Water Bodies and the Potential of Chitosan and Chitosan Derivatives for Elimination of Pharmaceuticals, J. Mol. Genet. Med. S4 (2015) 1-7. doi: 10.4172/1747-0862.S4-001.

7. Karimi-Maleh H., et al. - Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review, J. Clean. Prod. 291 (2021) 125880. doi: 10.1016/j.jclepro.2021.125880.

8. Cao Z., Fan L., Zhang J., Yan P., Wang H., and Dong W. - Degradation of ofloxacin in electro-Fenton system with adsorption and green self-regeneration function, J. Water Process Eng. 48 (2022) 102902. doi: 10.1016/j.jwpe.2022.102902.

9. Dutta J. and Mala A. A. - Removal of antibiotic from the water environment by the adsorption technologies: a review, Water Sci. Technol. 83 (3) (2020) 401-426. doi: 10.2166/wst.2020.335.

10. Panda S. K., et al. - Magnetite nanoparticles as sorbents for dye removal: a review, Environ. Chem. Lett. 19 (3) (2021) 2487-2525. doi: 10.1007/s10311-020-01173-9.

11. Shan H., Zeng C., Zhao C., and Zhan H. - Iron oxides decorated graphene oxide/chitosan composite beads for enhanced Cr(VI) removal from aqueous solution, Int. J. Biol. Macromol. 172 (2021) 197-209, doi: 10.1016/j.ijbiomac.2021.01.060.

12. Moradian M., Faraji A. R., and Davood A. - Removal of aflatoxin B1 from contaminated milk and water by nitrogen/carbon-enriched cobalt ferrite -chitosan nanosphere: RSM optimization, kinetic, and thermodynamic perspectives, Int. J. Biol. Macromol. 256 (2024) 127863, doi: 10.1016/j.ijbiomac.2023.127863.

13. Avinash Kadam, Jang J., Lim S. R., and Lee D. S. - Low-Cost Magnetic Fe3O4/Chitosan Nanocomposites for Adsorptive Removal of Carcinogenic Diazo Dye, Theor. Found. Chem. Eng. 54 (4) (2020) 655-663. doi: 10.1134/S0040579520040193.

14. Karaca E., et al. - Synthesis, characterization and magnetic properties of Fe3O4 doped chitosan polymer, J. Magn. Magn. Mater. 373 (2015) 53-59. doi:10.1016/j.jmmm. 2014.02.016.

15. Tandekar S. A., Pande M. A., Shekhawat A., Fosso-Kankeu E., Pandey S., and Jugade R. M. - Fe(III)–Chitosan Microbeads for Adsorptive Removal of Cr(VI) and Phosphate Ions, Minerals 12 (7) (2022) 874. doi: 10.3390/min12070874.

16. Bui Q. M., et al. - Removal of Fluoroquinolone Antibiotics by Chitosan–Magnetite from Aqueous: Single and Binary Adsorption, Processes 11 (8) (2023) 2396. doi:10.3390/ pr11082396.

17. Bui Q. M., Nguyen V. D., Vu T. Q., Nguyen L. T. N., and Nguyen H. T. H. - Removal of anionic dye from aqueous solution by chitosan - magnetite nanocomposite, Int. J. Environ. Anal. Chem. 104 (18) (2024) 6127-6147. doi: 10.1080/03067319.2022.2140410.

18. Erwin A., et al. - Magnetic iron oxide particles (Fe3O4) fabricated by ball milling for improving the environmental quality, IOP Conf. Ser. Mater. Sci. Eng. 845 (1) (2020) 012051. doi: 10.1088/1757-899X/845/1/012051.

19. Sureshkumar V., Kiruba Daniel S. C. G., Ruckmani K., and Sivakumar M. - Fabrication of chitosan–magnetite nanocomposite strip for chromium removal, Appl. Nanosci. 6 (2) (2016) 277-285. doi: 10.1007/s13204-015-0429-3.

20. Dhiman N. and Sharma N. - Removal of pharmaceutical drugs from binary mixtures by use of ZnO nanoparticles: (Competitive adsorption of drugs), Environ. Technol. Innov. 15 (2019) 100392. doi: 10.1016/j.eti.2019.100392.

21. Dhiman N. - Analysis of non competitive and competitive adsorption behaviour of ciprofloxacin hydrochloride and ofloxacin hydrochloride from aqueous solution using oryza sativa husk ash (single and binary adsorption of antibiotics), Clean. Mater. 5 (2022) 100108. doi: 10.1016/J.CLEMA.2022.100108.

22. Kaur G., Singh N., and Rajor A. - Ofloxacin adsorptive interaction with rice husk ash: Parametric and exhausted adsorbent disposability study, J. Contam. Hydrol. 236 (2021) 103737. doi: 10.1016/j.jconhyd.2020.103737.

23. Wahab M., Zahoor M., and Salman S. M. - A novel approach to remove ofloxacin antibiotic from industrial effluent using magnetic carbon nanocomposite prepared from sawdust of Dalbergia sissoo by batch and membrane hybrid technology, Desalin. WATER Treat. 165 (2019) 83-96. doi: 10.5004/dwt.2019.24573.

24. Yadav S., Goel N., Kumar V., Tikoo K., and Singhal S. - Removal of fluoroquinolone from aqueous solution using graphene oxide: experimental and computational elucidation, Environ. Sci. Pollut. Res. 25 (3) (2018) 2942-2957. doi: 10.1007/s11356-017-0596-8.

25. Yao B., Luo Z., Du S., Yang J., Zhi D., and Zhou Y. - Sustainable biochar/MgFe2O4 adsorbent for levofloxacin removal: Adsorption performances and mechanisms, Bioresour. Technol. 340 (2021) 125698. doi: 10.1016/j.biortech.2021.125698.

26. Duan W., et al. - Enhanced adsorption of three fluoroquinolone antibiotics using polypyrrole functionalized Calotropis gigantea fiber, Colloids Surfaces A Physicochem Eng. Asp. 574 (2019) 178-187. doi: 10.1016/J.COLSURFA.2019.04.068.

27. Szymańska U., Wiergowski M., Sołtyszewski I., Kuzemko J., Wiergowska G., and Woźniak M. K. - Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives. Microchem, J. 147 (2019) 729-740. doi: 10.1016/j.microc.2019.04.003.

28. Kong Q., He X., Shu L., and Sheng Miao M. - Ofloxacin adsorption by activated carbon derived from luffa sponge: Kinetic, isotherm, and thermodynamic analyses, Process Saf. Environ. Prot. 112 (2017) 254-264. doi: 10.1016/j.psep.2017.05.011.

29. Yu R. and Wu Z. - High adsorption for ofloxacin and reusability by the use of ZIF-8 for wastewater treatment, Microporous Mesoporous Mater. 308 (2020) 110494. doi:10.1016/ j.micromeso.2020.110494.

30. Munir M., et al. - Effective Adsorptive Removal of Methylene Blue from Water by Didodecyldimethylammonium Bromide-Modified Brown Clay, ACS Omega 5 (27) (2020) 16711-16721. doi: 10.1021/acsomega.0c01613.

31. Antonelli R., Martins F. R., Malpass G. R. P., da Silva M. G. C., and Vieira M. G. A. - Ofloxacin adsorption by calcined Verde-lodo bentonite clay: Batch and fixed bed system evaluation, J. Mol. Liq. 315 (2020) 113718. doi: 10.1016/J.MOLLIQ.2020.113718.

32. Vu Quang T., Bui Minh Q., and Hoang Thi D. - Synthesis of chitosan-magnetite composite apply to adsorption antibiotic in aqueous, Vietnam J. Catal. Adsorpt. 10 (1S) (2021) 121-126. doi: 10.51316/jca.2021.104.

33. Nharingo T. and Ngwenya T. J. - Single and binary sorption of lead(II) and zinc(II) ions onto Eichhornia Crassipes (water hyacinth) ash, Int. J. Eng. Sci. Innov. Technol. 2 (4) (2013) 419-426.

34. Abali M., Ichou A. A., and Benhiti R. - Adsorption of Anionic Dyes Using Monoionic and Binary Systems: a Comparative Study, Lett. Appl. NanoBioScience 10 (3) (2021) 2588-2593. doi: 10.33263/lianbs103.25882593.

Downloads

Published

25-06-2025

How to Cite

[1]
B. M. Quy, T. Tuan Tu, V. T. T. Le, V. Q. Tung, N. T. Q. Giang, and H. V. Quang, “Application of composite based on magnetite oxide to remove the ofloxacin from aqueous solution”, Vietnam J. Sci. Technol., vol. 63, no. 3, pp. 540–552, Jun. 2025.

Issue

Section

Materials

Most read articles by the same author(s)