Floating photocatalyst based on Fe doped TiO2 immobilized on vermiculite for degradation of ciprofloxacine
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/19250Keywords:
Ciprofloxacin, Fe doped TiO2, floating photocatalyst, VermiculiteAbstract
In this work, a floating photocatalyst based on Fe doped TiO2 immobilized vermiculite is synthesised via sol gel process. The samples was characterized with X-ray diffraction, N2 isothermal loops, scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet – visible absorption to find its crystal phase composition, particle size, porosity, morphology, and light absorption ability, respectively. The porosity of the support was enhanced as the natural vermiculite was pretreated by acid HNO3 40% to increases its specific surface area strongly from 6 to 323 m2/g. Crystalline anatase TiO2 was combined with vermiculite support to form a floating photocatalyst. The enhanced visible light absorption was achieved by adding 0.6 % mol Fe dopant in TiO2 structure. The total adsorption and photocatalytic efficiency in ciprofloxacine degradation of Fe doped TiO2 immobilized vermiculite was approximately 60 % while that of pure TiO2 immobilized vermiculite was only about 40 %. This result showed the improvement of floating photocatalysts in degrading antibiotics in water using visible light
Downloads
References
1. Chen T., Liu Y., Lu J., Xing J., Li J., Liu T., and Xu Q. - Highly efficient detection of ciprofloxacin in water using a nitrogen-doped carbon electrode fabricated through plasma modification, New Journal of Chemistry 43 (2019) 15169-15176. https://doi.org/ 10.1039/C9NJ03511G.
2. Selvam A., Kwok K., Chen Y., Cheung A. , Leung K. S. Y., and Wong J. W. C. - Influence of livestock activities on residue antibiotic levels of rivers in Hong Kong, Environmental Science and Pollution Research 24 (2017) 9058-9066. https://doi: 10.1007/s11356-016-6338-5.
3. Verinda S. B., Muniroh M., Yulianto E., Maharani N., Gunawan G., and Amalia N. F. -Degradation of ciprofloxacin in aqueous solution using ozone microbubbles: spectroscopic, kinetics, and antibacterial analysis, Heliyon 8 (8) (2022) e10137. https://doi: 10.1016/j.heliyon.2022.e10137. eCollection 2022 Aug.
4. Costa L. N., Nobre F. X., Lobo A. O. and Matos J. M. E. - Photodegradation of ciprofloxacin using Z-scheme TiO2/SnO2 nanostructures as photocatalyst, Environmental Nanotechnology, Monitoring & Management 16 (2021) 100466. https://doi.org/10.1016/ j.enmm.2021.100466.
5. Le N. D., Hoang A. Q., Hoang T. T. H., Nguyen T. A. H., Duong T. T., Pham T. M. H., et al. - Antibiotic and antiparasitic residues in surface water of urban rivers in the Red River Delta (Ha Noi, Viet Nam): concentrations, profiles, source estimation, and risk assessment, Environmental Science and Pollution Research 28 (2021) 10622-10632. https://doi:10.1007/s11356-020-11329-3.
6. Honarmandrad Z., Sun X., Wang Z., Naushad M., and Boczkaj G. - Activated persulfate and peroxymonosulfate based advanced oxidation processes (AOPs) for antibiotics degradation - A review, Water Resources and Industry 29 (2023) 100194. https://doi:10.1016/j.wri.2022.100194.
7. Cowie B. E., Porley V., and Robertson N. - Solar Disinfection (SODIS) Provides a Much Underexploited Opportunity for Researchers in Photocatalytic Water Treatment (PWT), ACS Catalysis 10 (20) (2020) 11779-11782. https://doi.org/10.1021/acscatal.0c03325.
8. Usman M. R., Prasasti A., Fajriyah S., Marita A. W., Islamiah S., Firdaus A. N., et al. -Degradation of ciprofloxacin by titanium dioxide (TiO2) nanoparticles: Optimization of conditions, toxicity, and degradation pathway, Bulletin of Chemical Reaction Engineering & Catalysis 16 (4) (2021) 752-762. https://doi:10.9767/bcrec. 16.4.11355.752-762.
9. Ali F., Moin-ud-Din G., Iqbal M., Nazir A., Altaf I., Alwadai N., et al. - Ag and Zn doped TiO2 nano-catalyst synthesis via a facile green route and their catalytic activity for the remediation of dyes, Journal of Materials Research and Technology 23 (2023) 3626-637. https://doi.org/10.1016/j.jmrt.2023.02.011.
10. Nguyen L. T., Nguyen H. T., Pham T. D., Tran T. D., Chu H. T., Dang H. T., et al. -Visible Light Driven Photocatalytic Degradation of Ciprofloxacin by N, S Co-doped TiO2: The Effect of Operational Parameters, Topics in Catalysis 63 (2020) 985-995. https://doi:10.1007/s11244-020-01319-7.
11. Li T., Abdelhaleem A., Chu W., Pu S., Qi F., and Zou J. - S-doped TiO2 photocatalyst for visible LED mediated oxone activation: Kinetics and mechanism study for the photocatalytic degradation of pyrimethanil fungicide, Chemical Engineering Journal 411 (2021) 128450.
12. Tang C., Hu M., Fang M., Liu Y., Wu X., and Liu W. - Photocatalytic Property of TiO2-Vermiculite Composite Nanofibers via Electrospinning, Nanoscale Research Letters 10 (2015) 276. http://doi:10.1186/s11671-015-0977-1.
13. Liu M., Zhang L., Xi B.D., Yu S., Hu X., and Hou L. A. - Degradation of ciprofloxacin by TiO2/Fe2O3/zeolite catalyst-activated persulfate under visible LED light irradiation, RSC Advances 7 (2017) 51512-51520. https://doi.org/10.1039/C7RA08475G
14. Li D., Li R., Zeng F., Yan W., Deng M., and Cai S. - The photoexcited electron transfer and photocatalytic mechanism of g-C3N4/TiO2 heterojunctions: Time-domain ab initio analysis, Applied Surface Science 614 (2023) 156104. https://doi.org/10.1016/ j.apsusc.2022.156104.
15. Malakootian M., Nasiri A., and Amiri Gharaghani M. - Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate, Chemical Engineering Communications 207 (1) (2020) 56-72. http://doi:10.1080/00986445. 2019.1573168.
16. Bui V. H., Vu T. K., To H. T., and Negishi N. - Application of TiO2-ceramic/UVA photocatalyst for the photodegradation of sulfamethoxazole, Sustainable Chemistry and Pharmacy 26 (2022) 100617. http:// doi:10.1016/j.scp.2022.100617.
17. Wang L., Wang X., Cui S., Fan X., Zu B., and Wang C. - TiO2 supported on silica nanolayers derived from vermiculite for efficient photocatalysis, Catalysis Today 216 (2013) 95-103. http://doi:10.1016/j.cattod.2013.06.026.
18. Machado L. C. R., Torchia C. B., and Lago R. M. - Floating photocatalysts based on TiO2 supported on high surface area exfoliated vermiculite for water decontamination, Catalysis Communications 7 (8) (2006) 538-541. http://doi:10.1016/j.catcom. 2005.10.020.
19. Nguyen N. M., Nguyen H. T., Negishi N., et al. - Effects of Ni doping and silica gel bead support on characteristics of TiO2 catalyst, Journal of Electronic Materials 51 (2022) 6204-6212. https://doi.org/10.1007/s11664-022-09867-2.
20. Nghia N. M., Hue N. T., Thu M. T. A., et al. - Preparation and characterization of Fe-doped TiO2 films covered on silicagel, Journal of Electronic Materials 45 (2016) 3795-3800. https://doi.org/10.1007/s11664-016-4524-3.
21. Jozefaciuk G. and Matyka-Sarzynska D. - Effect of acid treatment and alkali treatment on nanopore properties of selected minerals, Clays and Clay Minerals 54 (2006) 220-229. http://doi:10.1346/CCMN.2006.0540207.
22. Wei Z., Yingying L., Mengting M., et al. - A novel chitosan–vanadium-titanium-magnetite composite as a superior adsorbent for organic dyes in wastewater, Environment International 142 (2020) 105798. https://doi.org/10.1016/j.envint.2020.105798.
23. Parhizkar J. and Habibi M. H. - Synthesis, characterization and photocatalytic properties of Iron oxide nanoparticles synthesized by sol-gel autocombustion with ultrasonic irradiation, Nanochemistry Research 2 (2) (2017) 166-171. http://doi:10.22036/NCR. 2017.02.002.
24. Alamouti A. F., Nadafan M., Dehghani Z., Ara M. H. M., and Noghreiyan A. V. - Structural and Optical Coefficients Investigation of γ-Al2O3 Nanoparticles using Kramers - Kronig Relations and Z - scan Technique, Journal of Asian Ceramic Societies 9 (1) (2021) 366-37. http://doi:10.1080/21870764.2020.1869881.
25. Almontasser A., Parveen A., and Azam A. - Synthesis, characterization and antibacterial activity of Magnesium Oxide (MgO) nanoparticles, IOP Conference Series: Materials Science and Engineering 577 (2019) 012051. http://doi: 10.1088/1757-99X/ 577/1/012051.
26. Thi P. T. V, Dinh T. T, Viet C. D. - Novel N,C,S-TiO2/WO3/rGO Z-scheme heterojunction with enhanced visible-light driven photocatalytic performance, Journal of Colloid and Interface Science 610 (2022) 49-60. https://doi.org/10.1016/j.jcis. 2021.12.050.
27. Verena P., Paul E., Shunyi L., et al. - Energy band alignment between anatase and rutile TiO2, The Journal of Physical Chemistry Letters 4 (23) (2013) 4182-4187. https://doi.org/10.1021/jz402165b.
28. Abderrahim E. M., Imane A., Omar Z., et al. - Physico-chemical characterization and photocatalytic activity assessment under UV-A and visible-light irradiation of iron-doped TiO2 nanoparticles, Arabian Journal of Chemistry 16 (12) (2023) 105331. https://doi.org/ 10.1016/j.arabjc.2023.105331.
29. Thi T. T. L, Dinh T. T., Thi H. D. - Remarkable enhancement of visible light driven photocatalytic performance of TiO2 by simultaneously doping with C, N, and S, Chemical Physics 545 (2021) 111144. https://doi.org/10.1016/j.chemphys.2021.111144.
30. Thuy L. T. T, Lan N. T, Trinh T. D., Noi N. V. - Enhanced photocatalytic degradation of Rhodamine B using C/Fe co-doped Titanium dioxide coated on activated carbon, Journal of Chemistry 2019 (2019) 2949316. https://doi.org/10.1155/2019/2949316.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.