Optimizing the preparation of nanoemulsions based on sacha inchi (Plukentia volubilis L.) seed oil by response surface methodology

Dam Xuan Thang, Cung Dinh Duc, Nguyen Ngoc Quynh, Pham Thi Tham, Thai Hoang, Nguyen Phi Hung, Nguyen Thuy Chinh
Author affiliations

Authors

  • Dam Xuan Thang Hanoi University of Industry, 298 Cau Dien, Bac Tu Liem, Ha Noi, Viet Nam
  • Cung Dinh Duc Hanoi University of Industry, 298 Cau Dien, Bac Tu Liem, Ha Noi, Viet Nam
  • Nguyen Ngoc Quynh Hanoi University of Industry, 298 Cau Dien, Bac Tu Liem, Ha Noi, Viet Nam
  • Pham Thi Tham Hanoi University of Industry, 298 Cau Dien, Bac Tu Liem, Ha Noi, Viet Nam https://orcid.org/0000-0001-5070-686X
  • Thai Hoang Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Phi Hung Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0000-0002-6678-4253
  • Nguyen Thuy Chinh Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, 100000, Viet Nam https://orcid.org/0000-0001-8016-3835

DOI:

https://doi.org/10.15625/2525-2518/19437

Keywords:

nanoemulsion, Sacha Inchi (Plukentia volubilis L.) seed oil, surfactant, droplet size, response surface methodology

Abstract

This work presents the use of Sacha Inchi (Plukentia volubilis L.) seed oil (SO) as an oily phase for preparation of nanoemulsion systems. The pseudo-ternary phase diagram for SO, water and surfactants has been constructed to find the suitable range for components of the emulsion systems. The optimization has been processed to investigate the optimal composition of components of the emulsion systems. The emulsion prepared based on SO, Tween 80 and distilled water had a high stability without layer separation after 30 days of testing. Therefore, three technology factors including SO volume, Tween 80 volume and distilled water volume with low level (-1) and high level (+1) have been selected while the droplet size was used as a objective function. The quadratic design model and analysis of variance (ANOVA) statistical model have been calculated based on the data of droplet size obtained from 15 randomized experiments. The optimization was carried out by using Design Expert 11.1.0.1 software and Box-Behnken design type by response surface methodology (RSM). The results showed a high fitting of theoretical model and experimental data. The optimal conditions were found at SO of 266 µL, Tween 80 of 264 µL, and distilled water of 483 µL. At the optimal conditions, the droplet size of the submicron emulsion was 57.9 ± 1.5 nm. Other characteristics of the nanoemulsion prepared at the optimal conditions have been evaluated by using the infrared (IR) spectroscopy, stereo microscopy (SM), zeta potential and ultra violet visible (UV-Vis) spectroscopy.  

Downloads

Download data is not yet available.

References

1. Nur A.R. M. R. and Lai K. L. - Sacha Inchi (Plukenetia Volubilis L.): recent insight on phytochemistry, pharmacology, organoleptic, safety and toxicity perspectives, Heliyon 8 (9) (2022) e10572. https://doi.org/10.1016%2Fj.heliyon.2022.e10572.

2. Alexandra V., Frank L. R. O., Adriana V. O., Dayana B. R., Ana M. M. and Fernando R. E. - Sacha Inchi Seed (Plukenetia volubilis L.) Oil: Terpenoids, in: Shagufta P. and Areej M. A. T. (Eds), Terpenes and Terpenoids - Recent Advances, Intechopen Limited Publishing, London, 2021. DOI: 10.5772/intechopen.96690.

3. Ankit G., Beenu T., Manvesh K. S., Vivek S. - Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals, Food Chem. 373 (B) (2022) 131459. https://doi.org/10.1016/j.foodchem.2021.131459.

4. Norhazlindah M. F., Jahurul M. H. A., Norliza M., Shihabul A., Shahidul I., Nyam K. L., Zaidul I. S. M. - Techniques for extraction, characterization, and application of oil from sacha inchi (Plukenetia volubilis L.) seed: a review, J. Food Meas. Charact. 17 (2023) 904–915. https://doi.org/10.1007/s11694-022-01663-0.

5. Sunan W., Fan Z., Yukio K. - Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses, Food Chem. 265 (2018) 316-328. https://doi.org/10.1016/j.foodchem.2018.05.055.

6. Cang M. H., Chinh N. D., Nhan N. P. T., Giang B. L. - Physico-chemical properties of sacha inchi (Plukenetia volubilis L.) seed oil from Vietnam, Asian J. Chem. 32 (2020) 335-338. https://doi.org/10.14233/ajchem.2020.22233.

7. Xiaoqiu S., Jinyu W., Shuaitao L., Yifei W. - Formation of sacha inchi oil microemulsion systems: effects of non-ionic surfactants, short-chain alcohols, straight-chain esters and essential oils, J. Sci. Food Agric. 102 (9) (2022) 3572-3580. https://doi.org/10.1002/jsfa.11703.

8. Suraj K. M., Atmaram P. P. - Preparation, optimization and preliminary pharmacokinetic study of curcumin encapsulated turmeric oil microemulsion in zebra fish, Eur. J. Pharm. Sci. 155 (2020) 105539. https://doi.org/10.1016/j.ejps.2020.105539.

9. Huy N. M., Hien T. T. B., Thoai N. D. - Preparation and formulation of self-microemulsifying drug delivery system (SMEDDS) containing diclofenac, J. Military Pharm. Med. 5 (2021) 5-16.

10. Yeon-Ji J., Heike P. K., Ulrike S. van der S. - Collagen peptide-loaded W1/O single emulsions and W1/O/W2 double emulsions: influence of collagen peptide and salt concentration, dispersed phase fraction and type of hydrophilic emulsifier on droplet stability and encapsulation efficiency, Food Funct. 10 (2019) 3312-3323, https://doi.org/10.1039/C8FO02467G.

11. Jaiswal M., Dudhe R., Sharma P. K. - Nanoemulsion: an advanced mode of drug delivery system, 3 Biotech. 5 (2) (2015) 123-127. https://doi.org/10.1007%2Fs13205-014-0214-0.

12. Lei J., Gao Y., Hou X., Sheng Z., Zhang C., Du F. - A simple and effective strategy to enhance the stability and solid-liquid interfacial interaction of an emulsion by the interfacial dilational rheological properties, Soft Matter. 16 (24) (2020) 5650-5658. https://doi.org/10.1039/D0SM00638F.

13. Mundada V., Patel M., Sawant K. - Submicron emulsions and their applications in oral delivery, Crit Rev Ther Drug Carrier Syst. 33 (3) (2016) 265-308. https://doi.org/10.1615/critrevtherdrugcarriersyst.2016017218.

14. Kiattiphumi S., Ampa J. - Determination of hydrophilic–lipophilic balance value and emulsion properties of sacha inchi oil, Asian Pac. J. Trop. Biomed. 7 (12) (2017) 1092-1096. https://doi.org/10.1016/j.apjtb.2017.10.011.

15. Noordin M. Y., Venkatesh V. C., Sharif S., Elting S., Abdullah A. - Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel, J. Mater. Process Technol. 145 (1) (2004) 46-58. https://doi.org/10.1016/S0924-0136(03)00861-6.

16. Sarah W., Shaobo D., Jun Z., Muhammad A. B., Forrest I. - Optimization of a novel liquid-phase plasma discharge process for continuous production of biodiesel, J. Clean Prod. 228 (2019) 405-417. https://doi.org/10.1016/j.jclepro.2019.04.311.

17. Verma R., Kumar M. - Development and optimization of methotrexate encapsulated polymeric nanocarrier by ionic gelation method and its evaluations, ChemistrySelect 7 (48) (2022) e202203698. https://doi.org/10.1002/slct.202203698.

18. Yusuff A. S., Ishola N. B., and Gbadamosi A.O. - Artificial intelligence techniques and response surface methodology for the optimization of methyl ester sulfonate synthesis from used cooking oil by sulfonation, ACS Omega 8 (22) (2023) 19287–19301. https://doi.org/10.1021/acsomega.2c08117.

19. Putri D. C., Dwiastuti R., Marchaban M., Nugroho A. K. - Optimization of mixing temperature and sonication duration in liposome preparation, J. Pharm. Sci. Commun. 14 (2017) 79–85. doi: 10.24071/jpsc.142728.

20. Vallar S., Houivet D., El Fallah J., Kervadec D., Haussonne J. M. - Oxide slurries stability and powders dispersion: optimization with zeta potential and rheological measurements, J. Eur. Ceram. Soc. 19 (6–7) (1999) 1017-1021. https://doi.org/10.1016/S0955-2219(98)00365-3.

21. Ajay K. S., Anjali, Neelima V., Suruchi P., Kiran Y. V., Sanjeev K. M. - Optimizing a detection method for estimating polyunsaturated fatty acid in human milk based on colorimetric sensors, Mater. Sci. Energy Technol. 2 (3) (2019) 624-628. https://doi.org/10.1016/j.mset.2019.07.001.

Downloads

Published

28-08-2025

How to Cite

[1]
X. T. Dam, “Optimizing the preparation of nanoemulsions based on sacha inchi (Plukentia volubilis L.) seed oil by response surface methodology”, Vietnam J. Sci. Technol., vol. 63, no. 4, pp. 768–779, Aug. 2025.

Issue

Section

Materials

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 > >> 

You may also start an advanced similarity search for this article.